Abstract:
An aerial power generation system includes a guide line supported by a support body. Wind driven elements are configured and shaped to provide maximum force from both lift and drag during the downwind phase of operation and minimum force during the upwind phase. The guide lines add stability to the system and provide better control over angular orientation and direction of motion. Power transfer is through one or more tow lines connected from the driven elements to power generation devices on the ground. Another embodiment of the aerial power generation system includes a revolving apparatus and two or more wind powered driven elements connected by tow lines to the revolving apparatus. The method includes changing the driven elements between high and low force configurations for downwind and upwind operation, and flying the driven elements in a selected pattern perpendicular to the tow line.
Abstract:
An aerial power generation system includes a guide line supported by a support body. Wind driven elements are configured and shaped to provide maximum force from both lift and drag during the downwind phase of operation and minimum force during the upwind phase. The guide lines add stability to the system and provide better control over angular orientation and direction of motion. Power transfer is through one or more tow lines connected from the driven elements to power generation devices on the ground. Another embodiment of the aerial power generation system includes a revolving apparatus and two or more wind powered driven elements connected by tow lines to the revolving apparatus. The method includes changing the driven elements between high and low force configurations for downwind and upwind operation, and flying the driven elements in a selected pattern perpendicular to the tow line.
Abstract:
A thruster system is provided for a vehicle that can be used to reduce the roll propensity of a motor vehicle. The system utilizes a control system and multiple sets of thrusters which are strategically placed upon the vehicle. The control system is provided for detecting a potential roll condition and activates selected ones of the thrusters to produce a necessary thrust force for counteracting roll forces. The thrusters are connected to an on-board pressurized gas source that generates the anti-roll thrust force.
Abstract:
Vertical axis wind turbine and horizontal wind turbine each with a rotary airfoil assembly that has helical swept airfoils whose free ends each have a spoiler. The vertical axis wind turbine has permanent magnet discs for levitating static weight of an entirety of the rotary airfoil assembly via magnetic repulsion. There is a hub or affixing the permanent magnet discs within a frame structure in a manner that counteracts both a coefficient of friction (“COF”) associated with rotation of the rotary airfoil assembly and ensuing bearing wear imparted from the rotary airfoil assembly. The horizontal axis wind turbine has collapsible telescoping towers.
Abstract:
An energy unit capable of being configured in a transportation configuration and in an operational configuration. The unit comprises a container having first and second ends opposing a longitudinally-extending central section. In the transportation configuration, the container's central section is positioned generally parallel with a supporting ground surface. In the operational configuration the container is configured to be positioned with the first end on the supporting ground surface such that the second end is set apart in an upward direction from the supporting ground surface. The energy unit additionally comprises a wind turbine for generating electrical energy. In the operational configuration, the wind turbine is configured to be received within the interior space of the container, while in the transportation configuration the wind turbine is configured to extend from the exterior surface of the container.
Abstract:
Vertical axis wind turbine and horizontal wind turbine each with a rotary airfoil assembly that has helical swept airfoils whose free ends each have a spoiler. The vertical axis wind turbine has permanent magnet discs for levitating static weight of an entirety of the rotary airfoil assembly via magnetic repulsion. There is a hub or affixing the permanent magnet discs within a frame structure in a manner that counteracts both a coefficient of friction (“COF”) associated with rotation of the rotary airfoil assembly and ensuing bearing wear imparted from the rotary airfoil assembly. The horizontal axis wind turbine has collapsible telescoping towers.
Abstract:
The Variable Foil Machine harnesses fluid flow energy and propels fluids. A flexible foil (120) with reversible camber is secured to leading draft member (150) on leading support (122) and to trailing draft member (130). The trailing draft member (130) is secured to trailing guide (132), movable on trailing support (136). Apparatus can be installed on the ground or a craft via pivoting carrier (138), for alignment with fluid flow. In one embodiment, trailing draft member (130) reciprocates between support members 136l and 136r, upon oscillation of the foil (120). In other embodiments, a reciprocation amplitude offset between leading draft member (150) and trailing draft member (130) promotes cyclic translation of the foil (120) and linkage thereto. An energy converter (142) may be cooperatively coupled to produce energy or perform work. Integration of foil oscillations into rotary movement via a crank arm (48) is also embodied.
Abstract:
A tower mounting apparatus consists of tower mounting brackets, track members, a roller assembly, platform mounting brackets, and platform members. The tower mounting brackets are attached to a tower at a first interface, and are attached to the track members at a second interface. The roller assemblies are attached to the platform mounting brackets at a first interface, while the platform members are attached to the platform mounting brackets at a second interface. The roller assemblies are designed to rotate freely over the track members. One or more devices—such as a wind turbine, a cellular communication system, a transmitter/receiver for radio or television signals, or solar arrays—may be mounted onto the platform. The apparatus may further comprise a slip-ring assembly that provides a continuous electrical connection to such devices. The platform mounting apparatus may be installed on a variety of different towers.
Abstract:
A Karman vortex street generator including a shell (1), permanent magnets (3, 6), a vortex generating body (4), and a metal winding (5). Both ends of the shell (1) are respectively provided with an inlet end (2) and an outlet end (7). The permanent magnets (3, 6) are respectively located on two corresponding surfaces inside the shell (1), and the N pole of the permanent magnet on one surface corresponds to the S pole of the permanent magnet on the other surface so as to form a magnet field in the shell (1). The vortex generating body (4) is provided in the vertical center position near the inlet end (2) in the shell (1) so as to generate a Karman vortex when a fluid flows. The metal winding (5) located in the magnet field is able to regularly cut magnetic lines of force under the action of the Karman vortex and makes magnetic flux passing through the metal winding (5) change so as to generate an induction current.
Abstract:
Disclosed is a system for generating electrical power using flowing water in canals, rivers and the like water streams. The system comprising: plurality of circular structures, each having a bore at the center and plurality of elongated arms being fixed on the outer periphery of said structure; plurality of blades being fitted on said plurality of elongated arms; a rotating shaft for rotatably accommodating in space apart relationship said circular structures over outer body of said shaft through said bore; an electrical generator for converting the mechanical energy generated by rotation of said shaft into electrical energy to produce electrical power; and a transmission device for transmitting the mechanical energy generated by rotation of said shaft from shaft to said electrical generator; wherein said circular structures along with blades are kept across the flow of water, the blades of said structure get rotation due to force of flowing water and generate energy which rotates said shaft which in turn generate mechanical energy and finally said mechanical energy is transmitted to electrical generator through transmission device for generating electrical power.