Abstract:
A combustor for use in a gas turbine engine is provided with a first wall defining a combustion zone; an outer casing partially defining a cooling plenum about the first wall; a second wall spaced apart from the first wall and defining together therewith a second plenum, the second wall bearing a plurality of perforations for passing fluid from the first plenum in impinging streams upon the first wall; and a plurality of ribs extending between the first and second walls and compartmentalizing the second plenum. The ribs add substantial stiffness to the combustor as well as providing for independently controlled cooling of the substantially isolated compartments formed thereby. The impinging streams provided by the perforations in the second wall substantially increase local fluid velocities and conductive heat transfer.
Abstract:
A wind power installation in which conduits through which a cooling medium flows are passed from the interior of the wind power installation through the tower wall or through the foundation outwardly, and the cooling conduits in the heat exchanger bear externally against the tower or are arranged there and are arranged between the tower wall and a cover of the wall of the cooling system.
Abstract:
The invention relates to a cooling panel assembly (2) for a wind turbine tower (1). It is arranged to be mounted on such a tower (1) on a section thereof as seen in the circumferential direction. The cooling panel assembly (2) includes at least one cooling panel (2a,2b). According to the invention, the cooling panel assembly (2) includes deflector means (6) mounted at the top of the at least one cooling panel (2a, 2b) such that the deflector means (6) shields the cooling panel assembly (2) from above. The deflector means (6) has substantially the same circumferential extension or more as the other parts of the cooling panel assembly (2). The invention also relates to a wind turbine tower (1) provided with at least one such cooling panel assembly (2).
Abstract:
A direct drive wind turbine with a cooling system has a generator with a rotor and a stator and a bearing with an inner ring and an outer ring connecting the rotor and the stator rotatively. The cooling system includes at least one heat sink which is in thermal communication with the inner ring of the bearing and a heat dissipater which is in thermal communication with the heat sink.
Abstract:
The arrangement directed to a generator, which contains a rotor and a stator us disclosed. The stator contains at least two stator segments. At least one of the stator segments contains a number of stacked laminate plates. The stacked laminate plates contain a number of slots at a first side, while the first side of the stacked laminate plates is aligned to the rotor. The slots support a metal-winding of a stator coil. At least one hollow cooling-pipe is partly integrated into the stacked laminate plates of the stator segment to cool its laminate plates by a cooling-medium, which is located into the cooling-pipes.
Abstract:
A wind turbine for generating electrical energy may include a tower, a nacelle at the top of the tower, and a rotor coupled to a generator within the nacelle. The wind turbine further includes a cooler including a spoiler and at least one cooler panel projecting above a roof of the nacelle. A heliplatform includes a support structure extending from the nacelle and at least partially integrated with the cooler. The wind turbine may also include a crane coupled to the nacelle and configured to move between a first stowed position underneath the nacelle roof and a second operational position. In the operational position, the crane is selectively positionable over the heliplatform. A method of using the wind turbine and crane is also disclosed.
Abstract:
A combustor cap assembly includes an annular shroud and an impingement plate coupled to the shroud. The impingement plate at least partially defines a plurality of impingement cooling holes and a cooling flow return passage. A cap plate is coupled to the impingement plate. The cap plate includes an impingement side which faces a second side portion of the impingement plate where the impingement side is axially spaced from the second side portion to define an impingement air plenum therebetween. The cooling flow return passage is in fluid communication with the impingement air plenum. A fluid conduit extends from a first side portion of the impingement plate towards a first end portion of the shroud. The fluid conduit is in fluid communication with the cooling flow return passage and provides for fluid communication out of the impingement air plenum.
Abstract:
A combustor cap assembly includes an impingement plate coupled to an annular shroud and a cap plate which is coupled to the impingement plate and forms an impingement air plenum therebetween. The cap assembly further includes a flow conditioning plate which is coupled to a forward end portion of the shroud. The flow conditioning plate includes an inner band portion, an outer band portion and an annular portion which extends radially therebetween. The annular portion includes upstream side, a downstream side and a plurality of flow conditioning passages which provide for fluid communication through the upstream and downstream sides. The inner band portion of the flow conditioning plate at least partially defines an exhaust channel. The exhaust channel is in fluid communication with the impingement air plenum and an exhaust outlet. The exhaust outlet is positioned to route cooling air from the impingement air plenum into an annular flow passage defined within a combustor.
Abstract:
A turbine engine combustor wall includes support shell and a heat shield. The support shell includes shell quench apertures, first impingement apertures, and second impingement apertures. The combustor heat shield includes shield quench apertures fluidly coupled with the shell quench apertures, first effusion apertures fluidly coupled with the first impingement apertures, and second effusion apertures fluidly coupled with the second impingement apertures. The shield quench apertures and the first effusion apertures are configured in a first axial region of the heat shield, and the second effusion apertures are configured in a second axial region of the heat shield located axially between the first axial region and a downstream end of the heat shield. A density of the first effusion apertures in the first axial region is greater than a density of the second effusion apertures in the second axial region.
Abstract:
A fluid pumping and energy recovery device may include a housing that defines an impeller chamber and a motor/generator chamber. An impeller may reside within the impeller chamber; and a motor/generator may reside in the motor/generator chamber. The motor/generator may include a stator and a rotor. The rotor may be coupled to the impeller and supported (e.g., by magnetic bearings) to rotate in the stator. The rotor may generate electrical power in a generating mode and rotate in response to electrical power applied to the stator in a motoring mode. Seals may be adapted to hydraulically isolate the pump chamber from the motor/generator chamber by sealing against a rotating surface of the device. In certain instances, sealing is achieved using a bidirectional seal.