摘要:
The invention provides a heat treatment apparatus, in which an intake valve (91a) is mounted on an ambient gas feed pipe (91) connected to a heating chamber (12), an exhaust valve (131a) is mounted on an exhaust pipe (131), and a pressure sensor (150) is provided on the heating chamber (12). Through the control of a control unit (80) connected to the pressure sensor (150), to the intake valve (91a) and to the exhaust valve (131a), the intake valve (91a) and the exhaust valve (131a) are opened or closed, thus supplying ambient gas into the heating chamber (12) or exhausting ambient gas from the cooling chamber (13) depending on an internal pressure of the heating chamber (12). Thus, the amount of ambient gas used in heat treating workpieces (1) is minimized and thus operational costs are reduced. It is possible to prevent accidents such as gas explosions as well as to reduce environmental contamination caused by the combustion of ambient gas.
摘要:
Cellular ceramic materials, for example closed cell glass ceramic materials, for use in construction of buildings comprising a clay material, carbon, and water used to form the cellular ceramic blocks, slabs and beams by expansion of the particles inside the ware. The cellular ceramic materials are produced by first mixing the clay, carbon and about 40% to about 70% water by weight of the clay in the mixture, allowing the mixture to cure, drying the cured mixture, then firing the dried mixture at a temperature and for a period of time sufficient to melt the surface of the mixture. The clay material can be, for example, surface clays, ball clays, kaolin, shale, fly ash and/or bentonite. In another embodiment a mixture of volcanic ash, carbon and water can be formed and layered with the mixture of clay, carbon and water. The cellular ceramic materials are, in most cases, impervious to liquid, are capable of supporting substantial loads in tension and compression without reinforcement, and require no additional insulating material. Such cellular ceramic material may also be used in the construction of buildings with a metal skeleton comprising metal bars forming a structure for supporting the cellular ceramic building material.
摘要:
Disclosed herein are methods of making shaped bodies, such as carbon-based, inorganic cement, or ceramic bodies. Methods disclosed herein may comprise applying a bidirectional gas flow to at least one heat treatment and/or controlled oxidation step. Also disclosed herein are methods of making shaped bodies comprising a single-step controlled oxidation firing process. Further disclosed herein are shaped bodies made by a process comprising applying a bi-directional gas flow to at least one heat treatment and/or controlled oxidation step, and shaped bodies made by a single-step controlled oxidation firing process. Further disclosed herein is a bidirectional gas flow furnace for the heat treatment and/or the controlled oxidation of a shaped body.
摘要:
The present disclosure relates to methods and apparatuses for continuous firing of shaped bodies in one cycle, in particular a continuous method for heat treatment and/or control oxidation of shaped bodies by passing them through a roller hearth furnace on furnace trays.
摘要:
A heat treating furnace inspection system comprises a camera configured to move through the furnace chamber of the furnace. The system typically includes a carriage which carries the camera and is especially useful for inspecting a roller hearth furnace. Conveyor rolls or another conveyor mechanism of the furnace is operated to move the camera through the furnace chamber in order to photograph the interior of the chamber for the purposes of inspection. Images of the furnace chamber interior may be displayed on a display screen and merged with text which may communicate information related to inspection findings.
摘要:
A heat treatment or heat soak furnace for use in both galvannealing and galvanizing processes including a heating apparatus configured to supply heat and remove heat. The heating apparatus may draw hot air from the exhaust of a direct fire strip annealing furnace, gas burners or electric heat exchangers as necessary. The furnace also may include a plurality of cooling mechanisms in order to ensure heat is removed and the temperature within the furnace regulated. In addition, the furnace may include baffles configured to allow portions of the interior of the furnace to be separated into different temperature zones. The furnace under this invention is capable of providing a suitable thermal environment for a desired time, duration, for steel sheet substrates with different chemistries, different coating thicknesses and different process speeds to achieve an optimum phase microstructure of the galvannealed, zinc-iron alloy coating; or to promptly solidify the galvanizing unalloyed zinc coating so that it has a high quality surface morphology.
摘要:
Systems and methods for use in processing raw material (e.g., iron bearing material) include a linear furnace apparatus extending along a longitudinal axis between a charging end and a discharging end (e.g., the linear furnace apparatus includes at least a furnace zone positioned along the longitudinal axis). Raw material is provided into one or more separate or separable containers (e.g., trays) at the charging end of the linear furnace apparatus. The separate or separable containers are moved through at least the furnace zone and to the discharging end where the processed material is discharged resulting in one or more empty containers. One or more of the empty containers are returned to the charging end of the linear furnace apparatus to receive further raw material.
摘要:
Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.
摘要:
Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.
摘要:
Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.