摘要:
Disclosed herein are methods of making shaped bodies, such as carbon-based, inorganic cement, or ceramic bodies. Methods disclosed herein may comprise applying a bidirectional gas flow to at least one heat treatment and/or controlled oxidation step. Also disclosed herein are methods of making shaped bodies comprising a single-step controlled oxidation firing process. Further disclosed herein are shaped bodies made by a process comprising applying a bi-directional gas flow to at least one heat treatment and/or controlled oxidation step, and shaped bodies made by a single-step controlled oxidation firing process. Further disclosed herein is a bidirectional gas flow furnace for the heat treatment and/or the controlled oxidation of a shaped body.
摘要:
The present disclosure relates to methods of making shaped bodies comprising providing a substantially uniform temperature and gas flow throughout the shaped body as a function of reaction time. The disclosure further relates to methods of making shaped bodies substantially uniformly oxidized. The methods comprise setting at least one shaped body and performing at least one firing of the at least one shaped body. The present disclosure further relates to shaped bodies made according to the methods disclosed.
摘要:
A method of fabricating a microstructure for an optical waveguide such as a photonic bandgap fiber is provided. The method includes the steps of assembling a stack of capillary tubes having substantially identical dimensions, fusing and redrawing the stack into a preform having a plurality of parallel holes of equal diameter, selecting a pattern of the holes for etching in order to increase their diameter, and plugging the unselected holes at one end of the preform against the flow of a pressurized etching fluid. Such plugging of the unselected holes is accomplished applying a layer of a gel-like sealant over the end of the preform, and then pushing the sealant into the holes to form sealant plugs in all of the holes. The sealant plugs are then removed from the selected holes by punching the sealant plugs out of the selected holes. The selected holes are then etched by conducting a pressurized flow of etching fluid to the end of the preform such that etching fluid flows only through the pattern of selected holes. The resulting preform is then fused and drawn into an optical waveguide, where the pattern of etched and unetched holes may form, for example, the microstructure for a photonic bandgap optical fiber.
摘要:
The disclosure is directed to a transparent armor laminate having a glass, glass-ceramic or ceramic strike face layer, one or a plurality of glass, glass-ceramic (“GC”), ceramic (“C”) or polymeric (“P”) backing layer behind the strike face layer, one or a plurality of spall catcher (“SC”) layers behind the backing layer(s), and a thin cover glass layer laminated to the strike face, the thin layer being the first layer to be impacted by any incoming projectile or debris. The cover glass has a thickness ≦3 mm. In another embodiment the cover glass thickness is ≦1 mm. Additionally, a defrosting/defogging element is laminated between the cover glass and the strike face.
摘要:
The disclosure is directed to a transparent armor laminate having a glass, glass-ceramic or ceramic strike face layer, one or a plurality of glass, glass-ceramic (“GC”), ceramic (“C”) or polymeric (“P”) backing layer behind the strike face layer, one or a plurality of spall catcher (“SC”) layers behind the backing layer(s), and a thin cover glass layer laminated to the strike face, the thin layer being the first layer to be impacted by any incoming projectile or debris. The cover glass has a thickness ≦3 mm. In another embodiment the cover glass thickness is ≦1 mm. Additionally, a defrosting/defogging element is laminated between the cover glass and the strike face.
摘要:
An optical fiber comprising: (i) a core; (ii) a cladding surrounding the core; wherein the cladding comprises a cladding ring that: (a) has a width W equal to or less than 10 microns; (b) includes at least 50 airlines, each airline having a maximum diameter or a maximum width of not more than 2 microns and more than 50% of said airlines have a length of more than 20 m; (c) has an air fill fraction of 0. 1% to 10%, and (d) has an inner radius Rin and an outer radius Rout, wherein 6 μm≦Rin≦14 μm, and 8 μm≦Rout≦14 μm; and (iii) an outer cladding surrounding said cladding ring.
摘要:
A preform for forming a hollow-core, slotted photonic band-gap (PBG) optical fiber for use in an environmental sensor, and methods of forming such a fiber using the preform are disclosed. The preform comprises a slotted cladding tube that surrounds a slotted, hollow-core PBG cane. The slots in the cladding tube and PBG cane are longitudinally formed and substantially aligned with each other. When the preform is drawn, the slots merge to form an elongated side opening or slot in the resulting hollow-core PBG fiber. In one case, the slot reaches the hollow core upon drawing, while in another case a second step is used to extend the slot to connect to the hollow core. The fiber is used to form an environmental sensor for sensing the presence of a target substance in an environment. The slot formed in the PBG region of the fiber forms a ridge waveguide wherein a portion of the light that otherwise is confined to the hollow core as a bound mode travels in the slot. The target substance affects the light traveling in the fiber, allowing for the target substance to be detected.
摘要:
A preform for forming a hollow-core, slotted photonic band-gap (PBG) optical fiber for use in an environmental sensor, and methods of forming such a fiber using the preform are disclosed. The preform comprises a slotted cladding tube that surrounds a slotted, hollow-core PBG cane. The slots in the cladding tube and PBG cane are longitudinally formed and substantially aligned with each other. When the preform is drawn, the slots merge to form an elongated side opening or slot in the resulting hollow-core PBG fiber.
摘要:
An optical fiber comprising: (i) a core; (ii) a cladding surrounding the core; wherein the cladding comprises a cladding ring that: (a) has a width W equal to or less than 10 microns; (b) includes at least 50 airlines, each airline having a maximum diameter or a maximum width of not more than 2 microns and more than 50% of said airlines have a length of more than 20 m; (c) has an air fill fraction of 0.1% to 10%, and (d) has an inner radius Rin and an outer radius Rout, wherein 6 μm≦Rin≦14 μm, and 8 μm≦Rout≦14 μm; and (iii) an outer cladding surrounding said cladding ring.