摘要:
Disclosed is a hot-stamping component, which includes a base steel plate; and a plated layer on the base steel plate and including a first layer, a second layer, and an intermetallic compound portion having an island shape in the second layer, wherein the first layer and the second layer are sequentially stacked, and an area fraction of the intermetallic compound portion with respect to the second layer is an amount of 20% to 60%.
摘要:
Disclosed is a hot-stamping component, which includes a base steel plate; and a plated layer on the base steel plate and including a first layer, a second layer, and an intermetallic compound portion having an island shape in the second layer, wherein the first layer and the second layer are sequentially stacked, and an area fraction of the intermetallic compound portion with respect to the second layer is an amount of 20% to 60%.
摘要:
The invention relates to a multi-level furnace for thermal treatment of the material flow which has at least two process chambers arranged one above another, each providing at least two level floors, and is equipped with one or more transfer devices for transferring the treated material flow from an upper process chamber to a lower process chamber. In order to separate the two process chambers in terms of gas flow, the transfer device has means for forming a material column in the transition region between the upper and the lower process spaces, wherein said means for forming a material column comprise at least one conveying unit or at least one chute, and the at least one conveying unit or at least one chute also forms a material removal device for the upper process chamber and/or a material input device for the lower process chamber.
摘要:
The invention relates to a multi-level furnace for thermal treatment of the material flow which has at least two process chambers arranged one above another, each providing at least two level floors, and is equipped with one or more transfer devices for transferring the treated material flow from an upper process chamber to a lower process chamber. In order to separate the two process chambers in terms of gas flow, the transfer device has means for forming a material column in the transition region between the upper and the lower process spaces, wherein said means for forming a material column comprise at least one conveying unit or at least one chute, and the at least one conveying unit or at least one chute also forms a material removal device for the upper process chamber and/or a material input device for the lower process chamber.
摘要:
Embodiments of the present invention relate to a handling device for handling a metal component part between a furnace device and a further processing device. The handling device comprises a temperature-control chamber, in which the metal component part can be inserted, and a conveying device. The temperature-control chamber comprises a temperature-control unit that adjusts a temperature in the temperature-control chamber. The temperature-control chamber can be conveyed between a receiving position, in which the metal component part can be conveyed from the furnace device into the temperature-control chamber, and a dispensing position, in which the metal component part can be conveyed from the temperature control chamber to the further processing device. The conveying device is configured in such a manner that the metal component part can be conveyed in the receiving position by means of the conveying device between the furnace device and the temperature-control chamber and that the metal component part can be conveyed in the dispensing position by means of the conveying device between the temperature-control chamber and the further processing device.
摘要:
In a finish heat treatment method and finish heat treatment apparatus for an iron powder, a raw iron powder is placed on a continuous moving hearth and continuously charged into the apparatus. In the pretreatment zone, the raw iron powder is subjected to a pretreatment of heating the raw iron powder in an atmosphere of hydrogen gas and/or inert gas at 450 to 1100° C. In decarburization, deoxidation, and denitrification zones, the pretreated iron powder is subsequently subjected to at least two treatments of decarburization, deoxidation, and denitrification. In the pretreatment zone, a hydrogen gas and/or an inert gas serving as a pretreatment ambient gas is introduced separately from an ambient gas used in the at least two treatments is introduced from the upstream side of the pretreatment zone and released from the downstream side so as to flow in the same direction as a moving direction of the moving hearth.
摘要:
The subject innovation relates to a multi-deck chamber furnace for heating up workpieces comprising a furnace housing having at least two horizontal furnace chambers that are arranged vertically one above the other, whereby each furnace chamber has an opening in a furnace wall on one side, and said opening can be closed by a furnace door. The furnace is characterized in that the furnace doors are arranged in front of the openings of the appertaining furnace chambers in such a way that the transversal axes of the furnace doors enclose an angle α with the furnace wall that is greater than 0° and smaller than 45°, whereby the transversal axis of a furnace door runs perpendicular to the horizontal axis of a furnace door. Furthermore, the furnace doors can be moved linearly along these transversal axes.
摘要:
A heat treatment or heat soak furnace for use in both galvannealing and galvanizing processes including a heating apparatus configured to supply heat and remove heat. The heating apparatus may draw hot air from the exhaust of a direct fire strip annealing furnace, gas burners or electric heat exchangers as necessary. The furnace also may include a plurality of cooling mechanisms in order to ensure heat is removed and the temperature within the furnace regulated. In addition, the furnace may include baffles configured to allow portions of the interior of the furnace to be separated into different temperature zones. The furnace under this invention is capable of providing a suitable thermal environment for a desired time, duration, for steel sheet substrates with different chemistries, different coating thicknesses and different process speeds to achieve an optimum phase microstructure of the galvannealed, zinc-iron alloy coating; or to promptly solidify the galvanizing unalloyed zinc coating so that it has a high quality surface morphology.
摘要:
Systems and methods for use in processing raw material (e.g., iron bearing material) include a linear furnace apparatus extending along a longitudinal axis between a charging end and a discharging end (e.g., the linear furnace apparatus includes at least a furnace zone positioned along the longitudinal axis). Raw material is provided into one or more separate or separable containers (e.g., trays) at the charging end of the linear furnace apparatus. The separate or separable containers are moved through at least the furnace zone and to the discharging end where the processed material is discharged resulting in one or more empty containers. One or more of the empty containers are returned to the charging end of the linear furnace apparatus to receive further raw material.
摘要:
Systems and methods for use in processing raw material (e.g., iron bearing material) include a linear furnace apparatus extending along a longitudinal axis between a charging end and a discharging end (e.g., the linear furnace apparatus includes at least a furnace zone positioned along the longitudinal axis). Raw material is provided into one or more separate or separable containers (e.g., trays) at the charging end of the linear furnace apparatus. The separate or separable containers are moved through at least the furnace zone and to the discharging end where the processed material is discharged resulting in one or more empty containers. One or more of the empty containers are returned to the charging end of the linear furnace apparatus to receive further raw material.