Abstract:
A practical, manufacturable Fabry-Perot etalon and method for fabricating the same is disclosed. The plastic coating material is removed from the ends of a predetermined length of single mode fiber. A small area of the glass fiber is exposed by scraping away the coating near the center of the fiber on one side, and the fiber is then broken at this point forming a small gap. The remaining coating holds the broken fiber together and automatically matches the pieces in alignment. Mirrors of desired relfectivity are applied to the polished fiber ends, either by gluing on discrete mirrors or by applying multilayer dielectric coatings. The fiber/mirror structure is mounted onto a piezoelectric substrate. A voltage is applied to the piezoelectric substrate, causing longitudinal expansion of the fiber gap and providing the scanning means to obtain a spectrum of resonant wavelengths.
Abstract:
A remote receiver for laser interferometer systems is split into two parts connected by a fiber optic link. The front-end of the receiver, located near the remote interferometer optics, houses only the optical components for focusing and mixing the laser beam, and transmits the beam through an optical fiber cable. The back-end of the receiver, located remotely, houses the electronic components for detecting and measuring the frequency difference to produce the signal for the measurement electronics.
Abstract:
An optical fibre Michelson interferometer has mirrors of highly reflective coatings deposited on the ends of the fibres forming the free arms of the interferometer. The interferometer preferably comprises single mode fibres, and is operated by a frequency swept laser.The interferometer has applications in the optical fibre interferometer sensing field.
Abstract:
A Mach Zehnder interferometer with arms of equal length is formed between two optic fibres. This is achieved by locating the lightly tensioned fibres in a generally parallel configuration and forming optical couplings between them at points which lie on the center-line of the configuration. Preferably the couplings are formed by a fused biconical tapering technique.
Abstract:
A closed loop optical fiber interferometer is used in sensing a quantity, Q, by applying a time varying or modulated measure of, Q, asymmetrically to the closed loop (24) and detecting phase shift between two counterpropagating optical signals in the closed loop. The closed loop (24) can be used as the sensing element or a separate sensor (68, 70) can develop a time varying signal which is then applied to the closed loop interferometer.
Abstract:
A common optical path interferometric gauge comprises an optical beam that is split into two beams. Both beams are modulated and recombined after introducing an optical path length difference greater than the coherence length of the optical source. The combined beam is guided along a common optical path and is subsequently split into reference and measurement beams. The measurement beam is guided along a measurement optical path that includes a moving workpiece surface. Both beams are recombined after interposing an optical path length difference therebetween so as to reestablish coherence between portions thereof, producing optical interference indicative of the surface movement.
Abstract:
The invention relates to an inerferometer based on the exploitation of an optical fibre through which both the phase signal which is of interest for the measurements concerned and a reference signal are simultaneously forwarded in order that in the differential measurement the noise introduced by the optical fibre for both thermal and mechanical reasons is ruled out.