Abstract:
A method and apparatus may be used to generate complex exponentials for either frequency domain or time domain applications by programming input parameter values into a complex exponential vector generator (260) having a frequency generator stage (281) and a vector phase accumulator stage (282) arranged with a vector element multiplier stage (283) to generate complex exponential phase index values (α0, α1, . . . αv−1) that are processed by a complex exponential generator stage (284) to output a plurality of complex exponential values (e.g., ej2πα0, ej2πα1, . . . ej2παv−1) that may be rearranged by a permutation unit (286) for use by vector data path.
Abstract:
A sine wave generator for a Direct Digital Synthesizer (DDS) converts a digital phase input into a digital sine wave output. Sine values and slopes are stored in read-only memory (ROM) for coarse upper phase bits in a first quadrant. A quadrant folder and phase splitter reflects and inverts values from the first quadrant to generate amplitudes for all four quadrants. Each sine value and slope is stored for a range of lower phase bits. A Delta bit separates upper and lower phase bits. Delta conditionally inverts the lower phase bits, the sine value, and the final polarity. A reduced AND logic array multiplies the slope by the conditionally inverted lower phase bits. A reconstructed ADD logic array then adds the conditionally inverted sine value. The conditionally inverted polarity is added to generate the final sine value. Sine generation logic is streamlined with conditional inversion based on the Delta bit.
Abstract:
A method for compensating NCO jitter by changing a step value used to increment an accumulator in the NCO to make up for inaccuracies, or jitters. In one approach, a remainder in the accumulator may be monitored and a compensated clock close to the current edge of an ideal clock may be generated. In another approach, a compensated clock close to the next edge of the ideal clock may be generated after the current edge of the ideal clock is missed. The step value may be stored in a memory, which may be a register. A jitter compensator may include a comparator for monitoring the remainder in the accumulator or a detector for detecting whether an ideal clock has been missed. The jitter compensator may also change the step value to a step value for a faster clock to compensate jitter.
Abstract:
A method, system and master service interface transfer differential timing over a packet network. The transmitting service interface receives a service clock and is coupled to a receiving service interface through a network backplane. A primary reference clock is provided to time the network backplane. The primary reference clock and the service clock are used to synthesize a copy of the service clock connected to the transmitting service interface. A first control word containing an error differential between the service clock and the synthesized copy of the service clock is generated and transmitted through the network backplane via a packet. The first control word, together with the primary reference clock, is used to recreate the service clock for timing the receiving service interface.
Abstract:
A waveform generator for generating a smooth version of an original waveform which contains abrupt transitions, includes a phase accumulator incremented at successive sampling times to produce an output representative of the phase of the original waveform, a phase scaler arranged to convert the residual contents of the accumulator following a transition from phase to time, computing means responsive to the time to calculate a number of samples along a smooth transition, each offset by that time from the sampling times, and a sequencer to replace the otherwise abrupt transition with the sequence of samples from the computed smooth transition.
Abstract:
A direct digital synthesizer (DDS) has reduced spurious signals and includes a DDS core that produces a digital representation of a signal to be synthesized. A plurality of DDS circuits are operatively connected to the DDS core, each having a digital-to-analog converter connected to the DDS core for receiving the digital representation and converting it into a signal. A modulator is operatively connected to an oscillator circuit and digital-to-analog converter for receiving signals from the digital-to-analog converter and producing a modulated output signal. The individual frequencies of the respective DDS circuits are randomly and continuously changed from each other. A mixer receives and mixes the modulated output signals from the plurality of DDS circuits to create a mixed output signal at a selected and fixed frequency.
Abstract:
A polyphase numerically controlled oscillator is disclosed. An input signal is received at a phase accumulator. The phase accumulator provides a phase to a phase interpolator. The phase interpolator then provides a plurality of output phases. The plurality of output phases are provided to a plurality of phase to amplitude converters. Each of said plurality of phase to amplitude converters process one of said plurality of output phases.
Abstract:
An advanced arbitrary waveform generator (“AAWG”) for producing an arbitrary waveform is disclosed. The AAWG may include a direct digital synthesis (“DDS”) module in signal communication with a sequence memory and a multiplication module in signal communication with both the DDS module and a waveform memory, where the multiplication module receives signal waveform data from the waveform memory and multiplies the received signal waveform data with a DDS output signal to produce the arbitrary waveform signal.
Abstract:
The invention relates to a signal generator for generating a sequence of digital values according to a reference clock signal, comprising at least one input terminal for receiving a an increment signal and an offset signal, a start value circuit adapted for determining a counter start value on the base of the offset signal and the increment signal, a counter being adapted to be set to the start value, and to change the counter position at each cycle of the reference clock signal to a new value according to the increment signal until a defined value is achieved, and an output terminal for outputting the counter values.
Abstract:
A polyphase numerically controlled oscillator (PNCO) is defined to include a plurality of sub-numerically controller oscillators (SNCO's). Each SNCO is capable of receiving a clock signal at a first clock rate and an assigned phase offset signal. Each SNCO is configured to generate a digital waveform for the assigned phase offset signal. The PNCO also includes a plurality of frequency multipliers for generating a frequency multiplied representation of the digital waveform generated by each SNCO. The PNCO further includes a multiplexer configured to receive output from each of the frequency multipliers according to the first clock rate. The multiplexer is further configured to receive a select signal, wherein the select signal triggers the multiplexer at a second clock rate.