Abstract:
A PDP with superior light-emitting characteristics and color reproduction is achieved by setting the chromaticity coordinate y (the CIE color specification) of light to 0.08 or less, more preferably to 0.07 or less, or 0.06 or less, enabling the color temperature of light to be set to 7,000 K or more, and further to 8,000 K or more, 9,000 K or more, or 10,000 K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in the dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. This PDP is also manufactured by: a method in which after the front and back panels are bonded together, the exhausting process for exhausting gas from the inner space between panels is started while the panels are not cooled to room temperature; or a method in which after the front and back panels are temporarily baked, the process for bonding the panels is started while the panels are not cooled to room temperature. This reduces the time and energy required for heating, resulting in reduction of manufacturing cost.
Abstract:
A plasma display panel comprises a plurality of red, green and blue display units arranged on a substrate, so as to form plural red, green, blue display unit channels whose directions are aligned towards a ventilation hole located on the substrate, for facilitating gas charge or discharge in a good speed.
Abstract:
An front plate structure for a plasma display panel is described. In accordance with the present invention, a protruding space pad structure is formed on the dielectric layer or protective layer of the front plate. The space pad is used to form the height difference on the surface of the front plate, about 3 μm to 15 μm. The height difference forms gas channels between the front plate and the discharge region to improve the performance of the vacuuming and refilling gas steps.
Abstract:
A PDP with superior light-emitting characteristics and color reproduction is achieved by setting the chromaticity coordinate y (the CIE color specification) of light to 0.08 or less, more preferably to 0.07 or less, or 0.06 or less, enabling the color temperature of light to be set to 7,000K or more, and further to 8,000K or more, 9,000K or more, or 10,000K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in the dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. This PDP is also manufactured by: a method in which after the front and back panels are bonded together, the exhausting process for exhausting gas from the inner space between panels is started while the panels are not cooled to room temperature; or a method in which after the front and back panels are temporarily baked, the process for bonding the panels is started while the panels are not cooled to room temperature. This reduces the time and energy required for heating, resulting in reduction of manufacturing cost.
Abstract:
A plasma display panel is disclosed, which prevents luminance from being reduced, prevents error discharge from occurring due to crosstalk, and improves exhaust ability. Auxiliary barriers or projections are formed in a boundary portion between respective cells in a stripe type barrier structure. Alternatively, a predetermined groove is formed in a predetermined position of a dielectric layer in a lattice shaped barrier structure. In addition to these barriers, second barriers are formed at a greater width or at constant intervals. Thus, exhaust ability can be improved, and error discharge due to crosstalk can be prevented from occurring. Also, luminance in corner portions of the cell can be improved, and contrast can be improved even if a black matrix is not formed.
Abstract:
A plasma display panel is disclosed, which prevents luminance from being reduced, prevents error discharge from occurring due to crosstalk, and improves exhaust ability. Auxiliary barriers or projections are formed in a boundary portion between respective cells in a stripe type barrier structure. Alternatively, a predetermined groove is formed in a predetermined position of a dielectric layer in a lattice shaped barrier structure. In addition to these barriers, second barriers are formed at a greater width or at constant intervals. Thus, exhaust ability can be improved, and error discharge due to crosstalk can be prevented from occurring. Also, luminance in corner portions of the cell can be improved, and contrast can be improved even if a black matrix is not formed.
Abstract:
A plasma display panel 10 includes a front substrate 11 and a back substrate 17 facing each other with a discharge space held therebetween, the surrounding areas of the substrates 11 and 17 being sealed up with a sealing layer 23, and partition walls 21 for sectioning the discharge space in a display area 31 into a plurality of discharge spaces. An exhaust/lead-in port 25 for exhausting and introducing discharge gas from and into the discharge spaces is provided in the outer peripheral non-display area 32 of one of the front and back substrates 11 and 17 and a lead-in rib 24 for defining a lead-in passage 41 from the exhaust/lead-in port 25 is provided. The dimension 42a of the space between the front substrate 11 and the back substrate 17 in the portion provided with the sealing layer 23 and the lead-in rib 24 is uniformized.
Abstract:
The object of this invention is to provide a plasma display panel in which an aging process essential to the manufacturing process generates minimal phosphor deterioration, enabling a relatively high luminous efficiency and high quality color production to be produced. To achieve this object, the aging process takes place while gas generated inside the panel is evacuated. Alternatively, after completion of the aging process, the phosphor of the whole panel is heated to restore heat deterioration.
Abstract:
The present invention provides a plasma display panel (PDP) capable of simplifying the number of processes, reducing costs for materials, improving an exhausting function and preventing erroneous discharge and cross-talk phenomena between neighboring cells. The present invention provides a plasma display panel (PDP), including: a vertical barrier rib and a horizontal barrier rib, wherein the vertical barrier rib and the horizontal barrier rib form a hexagonal shape to encompass discharge cell region in all directions; a connection barrier rib connecting the vertical barrier rib to the horizontal barrier rib, wherein the connection barrier rib have a groove at a central portion thereof so that a length of the horizontal barrier rib is shorter than a distance between the vertical barrier ribs; and a gas-passing path formed above a top surface of the horizontal barrier rib of which height is lowered with respect to a surface of the vertical barrier rib.
Abstract:
A plasma display panel (PDP) includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween. The first substrate and the second substrate are substantially rectangular in shape with long side edges and short side edges, and are interconnected by frit deposited between the first substrate and the second substrate. The substrates have a predetermined discharge region and predetermined non-discharge regions that surround the discharge region. The PDP also includes barrier ribs mounted between the first substrate and the second substrate. The barrier ribs are mounted at least partly on the discharge region, and at least partly on the non-discharge regions that are adjacent to the long side edges of the substrates.