Abstract:
At one of the vacuum tube is disposed an opaque photocathode receiving light from a window in the other end of the tube along a light axis which is spaced from and parallel to the axis of the tube. An accelerating mesh adjacent the photocathode rapidly accelerates the light produced photoelectrons in cooperation with an oblique electron lens along a path having an angle which is oblique to the light axis and tube axis toward a target or readout device. A field mesh adjacent the readout device accelerates the photoelectrons after being deflected by deflection plates to the readout device to provide an output photoelectron streak image thereon.
Abstract:
Photoelectrons emitted from a flat photocathode are collected within an evacuated envelope by a surface of an electrode. The photoelectrons are accelerated by an electron lens system, as an electron stream, within an evacuated cavity between the photocathode and the electrode surface. The photoelectrons are accelerated through two succeeding cavity regions in which the electron trajectories associated with the electron stream are increasingly compressed. A cavity region of lessening compression of the electron trajectories associated with the electron stream is defined between the two cavity regions of increasing compression. The electrode surface is located closely proximate to the cavity region of greatest compression to collect a maximum number of the photoelectrons.
Abstract:
An ultraviolet detector in which the electrode configuration is non-symmetrical in that one electrode operates permanently as the emitter and the other as the collector, at least one of the electrodes supported by the inner surface of the tube envelope and offering an expansive wide angle field of view for incoming ultraviolet radiation. The electrodes are DC biased to provide a high voltage difference therebetween, i.e., between cathode, or emitter, and anode or collector, the former responsive to each photon of ultraviolet energy incident from within the wide angle.