Abstract:
The present invention discloses an Oven Controlled Crystal Oscillator and a manufacturing method thereof. The Oven Controlled Crystal Oscillator comprises a thermostatic bath, a heating device, a PCB and a signal generating element, where the signal generating element is used for generating a signal of a certain frequency, the heating device, the PCB and the signal generating element are mounted in the thermostatic bath, the signal generating element is mounted in a groove formed on one side of the PCB, while the heating device is mounted against the other side of the PCB that is opposite to the groove. The signal generating element may be a passive crystal resonator or an active crystal oscillator. The Oven Controlled Crystal Oscillator according to the invention is advantageous for a small volume and a high temperature control precision.
Abstract:
An oscillation device is provided. The oscillation device includes: a main circuit portion, a heating unit, first and second crystal units, first and second oscillator circuits, a frequency difference detector, a first addition unit, an integration circuit unit, a circuit unit configured to control an electric power to be supplied to the heating unit, a compensation value obtaining unit, and a second addition unit. The compensation value obtaining unit is configured to obtain a frequency compensation value for compensating an output frequency of the main circuit portion based on an integrated value output from the integration circuit unit, and based on a change in the clock signal due to a difference between the temperature of the atmosphere and the temperature setting value of the heating unit. The second addition unit is configured to add the frequency compensation value to a frequency setting value.
Abstract:
An oscillating device includes an atomic oscillator, an oven controlled crystal oscillator, a correcting unit configured to correct an output signal of the oven controlled crystal oscillator on the basis of an output signal of the atomic oscillator, a housing configured to house the atomic oscillator and the oven controlled crystal oscillator, and a temperature adjusting unit configured to adjust the temperature in the housing to a predetermined temperature.
Abstract:
A temperature-controlled crystal oscillating unit and oscillator are provided, which can stabilize an output frequency thereof, have firmness against shock of falling etc., and are suitable for miniaturization and mass production. A crystal blank for the temperature-controlled crystal oscillating unit is formed by an inner region which is an oscillating plate; an outer region which surrounds the periphery of the inner region; and a connection portion which connects the inner region with the outer region. Electrodes are formed on two surfaces of the inner region, and a heater and a temperature sensor are disposed to surround the periphery of the electrode on one surface of the inner region where the electrode is formed thereon. The electrodes, the heater and the temperature sensor are respectively connected with terminals on the outer region by leads. A contact area between the temperature sensor and a crystal is increased.
Abstract:
A semiconductor device includes: a resistance R whose resistance value varies in response to a substrate temperature variation; a resistance corrector that is coupled in series with the resistance R and switches its resistance value by a preset resistance step width to suppress a resistance value variation of the resistance R; a first voltage generator for generating a first voltage that varies in response to the substrate temperature; a second voltage generator for generating second voltages Vf1 to Vfn−1 for specifying the first voltage at a point when a switching operation of the resistance value of the resistance corrector is performed; and a resistance switch unit for switching the resistance value of the resistance corrector by comparing the first voltage and the second voltages Vf1 to Vfn−1.
Abstract:
An oscillator assembly includes a substrate having a top surface, a bottom surface, and a plurality of side surfaces. At least one of the side surfaces has at least one castellation which is covered with conductive material and includes a lower end spaced from the bottom surface of the substrate. The space is defined by an elongate groove in the side surface which is devoid of conductive material and extends between the lower end of the castellation and the bottom surface of the substrate to eliminate the risk of a short circuit with any of the connection pads on a customer's motherboard. The oscillator assembly further incorporates an oscillator circuit in which a current limiting resistor is located in series between the power supply and the heater control circuit.
Abstract:
A thermoelectric device transfers heat away from or toward an object using the Peltier effect. In some embodiments, the length of at least one thermoelectric element is at least ten times greater than a combined average cross-sectional dimension, orthogonal to the length, of two thermoelectric elements.
Abstract:
A device includes: a base substrate having a bonding pad and a peripheral pad, the peripheral pad encompassing the bonding pad; an acoustic resonator on the base substrate; a cap substrate having a bonding pad seal and a peripheral pad seal, the bonding pad seal bonding around the perimeter of the bonding pad and the peripheral pad seal bonding with the peripheral pad to define a hermetically sealed volume between the cap substrate and the base substrate, the cap substrate having a through hole therein over the bonding pad providing access for a connection to the bonding pad; a low-resistivity material layer region disposed on a portion of a surface of the cap substrate disposed inside the hermetically sealed volume, the material layer region being isolated from the bonding pad seal; and electronic circuitry disposed in the material layer region and electrical connected with the acoustic resonator.
Abstract:
An oven controlled crystal oscillator includes a thermostatic bath, an inner circuit board, an outer circuit board, a heating element, and a temperature sensor. The inner circuit board is positioned inside the thermostatic bath and electrically connected with the outer circuit board via a pin, and the inner circuit board has a crystal oscillation circuit. The outer circuit board has a temperature control circuit and a power supply circuit electrically connecting with the temperature control circuit. The heating element and the temperature sensor electrically connect with the outer circuit board. A though slot is formed through the outer circuit board, and the thermostatic bath is inserted into the though slot. By inserting the thermostatic bath into the though slot of the outer circuit board, the height and the weight of the oven controlled crystal oscillator are reduced, the electric connection performance is enhanced, and thus the stability of the output frequency of the oven controlled crystal oscillator is improved.
Abstract:
An oscillator assembly including an oscillator seated on a pad of thermally conductive material formed on the surface of a printed circuit board and covered by a lid defining an oven for the oscillator. In one embodiment, a plurality of heaters are located on different sides of the oscillator and at least partially seated on the pad for evenly transferring heat to the pad and the oscillator. In one embodiment, the oscillator is a temperature compensated crystal oscillator and an integrated amplifier controller circuit on the printed circuit board integrates at least one operational amplifier for controlling the heater(s) and one or more transistors for providing heat to the oven. A canopy seated on the pad and covering the oscillator can be used for transferring heat more evenly to the oscillator. A cavity in the bottom of the printed circuit board defines an insulative air pocket.