Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A multi-channel transceiver includes a phase-locked loop circuit, a first transmitting channel and a second transmitting channel. The phase-locked loop circuit generates a first clock signal set and a second clock signal set with different frequencies. The first transmitting channel includes a first phase adjusting circuit and a first transmitter. The first phase adjusting circuit receives the first clock signal set and generates a first spread spectrum clock signal with a first SSCG profile. According to the first spread spectrum clock signal, the first transmitter generates a first serial data. The second transmitting channel includes a second phase adjusting circuit and a second transmitter. The second phase adjusting circuit receives the second clock signal set and generates a second spread spectrum clock signal with a second SSCG profile. According to the second spread spectrum clock signal, the second transmitter generates a second serial data.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period for carrier tracking. Further, the data processor, through combining two sets of BOC correlations with different chip spacings provides an alternative unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
Provided are a method and device for searching a cell, and the method comprises: timeslot synchronization is performed; a primary scrambling code group is identified and a frame synchronization is performed according to hashed values of code numbers of secondary synchronization codes (SSCs) in any several consecutive timeslots; and a primary scrambling code is obtained in the primary scrambling code group according to the primary scrambling code group, so as to complete cell searching.
Abstract:
A device and a method for determining the arrival time of a UWB signal including at least one pulse modulated at a carrier frequency. The receiver includes a frequency translation stage for translating the UWB signal to a first intermediate frequency and a second intermediate frequency. In an integration stage, the signals translated to the first intermediate frequency and to the second intermediate frequency are integrated on a time window to give a first integration result and a second integration result respectively. The phase deviation is determined between the first and second integration results and from this phase deviation, the arrival time of the UWB signal is deduced.
Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
A system and method of extracting data from data packets transmitted over a wireless network includes receiving a data packet having a preamble portion and a payload portion. The preamble portion is cross correlated with a first known spreading sequence to generate a first timing signal and the preamble portion is cross correlated with a second known spreading signal to generate a frame timing signal. An impulse is detected in the first timing signal and a first timing parameter is set based upon the detected impulse in the first timing signal. An impulse is detected in the frame timing signal and a frame timing parameter is set based upon the detected impulse in the frame timing signal. Data is extracted from the received payload portion according to the first timing parameter and the frame timing parameter.