Abstract:
In an example embodiment, there is disclosed a technique that enables a wireless device to achieve coexistence with an interfering source. The wireless device determines when interference is present and not present during a service period and reports the duration of interference free interval. At the end of an interference period, the wireless device can send a trigger signal indicating the start of an interference free interval to request data be sent to the wireless station until the expiration of the duration of the interference free interval. In particular embodiments, the signal sent by the wireless device can include an offset, for example a timing synchronization function (TSF) value, to indicate the end of the interference-free interval, perhaps computed so as allow for some clock drift.
Abstract:
A broadcast receiver (3) provides independent viewing of live or recorded programmes to primary and secondary locations (42a, 42b), which may share a common planner showing information on programmes selected for recording. The receiver (3) applies rules to govern the use of tuners to prevent conflicts between the two locations. Global settings may be altered only at the primary location (42a), while local settings may be applied independently at either location. Pay per view and day pass functions may be shared between locations.
Abstract:
Methods and apparatuses for concurrently recording multiple radio channels. A recorder includes a wideband tuner having a complex mixer for converting a received wideband RF signal to a complex signal that is then digitized. A digital front end module applies a number of complex down-mixers to the digital complex signal to generate the multiple radio channels in the baseband. Each one of the multiple radio channels in the baseband is further filtered, decimated and demodulated. A digital signal processing unit encodes each demodulated channel according to an audio compression format and stores the then encoded audio content to a storage unit. An RBDS decoder parses radio data service information associated with the stored audio content. The radio data service information is stored in a first section of the storage unit while the encoded audio content is stored in a second section of the storage unit.
Abstract:
In accordance with example embodiments of the present invention, a method and a corresponding apparatus are described comprising receiving, at a radio receiver, a broadcast program. At another radio receiver, supplementary data related to at least one other broadcast program is received, and at least a part of the received supplementary data is displayed. The radio receiver is switched to a broadcast program corresponding to a selected item of the displayed supplementary data.
Abstract:
A delay controller performs a delay control so as to stepwise increase a first delay amount in a first delay generator or second delay generator so as to minimize the delay amount of a video signal and an audio signal output from a first AV decoder and a second AV decoder. Thus, immediately after channel selection, the first video signal and the first audio signal or the second video signal and the second audio signal are output without a delay. This can provide a receiver capable of synchronizing the video signal output and the audio signal output between a plurality of receivable broadcast methods.
Abstract:
A monitoring receiver accepts program preferences from an operator. When active, the receiver automatically monitors alternate frequencies for programming that matches the program preferences, alerts the operator when a match is found, and may switch to a preferred program.
Abstract:
A method and system for monitoring broadcast programs from the beginning of the programs is provided. The system includes a tuner configured to receive and decode broadcast signals and provide programming as an output. The system also includes a buffer coupled to the tuner that stores programming from the tuner and provides buffered programming as an output delayed in time from the programming provided by the tuner. The system further includes processing circuitry coupled to the tuner and buffer that determines if the tuner is selected as a source for programming, and if a program is in progress when the tuner is selected. The processing circuitry provides the tuner programming as an output of the system if a program is not in progress when the tuner is selected, and provides the buffered programming as an output of the system if a program is in progress when the tuner is selected.
Abstract:
A system for decoding data, such as travel and traffic information, configured in data blocks embedded in an electromagnetic signal, such as a broadcasted radio signal, has been developed. The system includes a method and receiver for decoding the data with a background tuner in a manner that does not impair the ability of the background tuner to demodulate other signals. While a main tuner is tuned to demodulate a first electromagnetic signal to produce a data stream, the background tuner is switched to decode the data blocks only when the data blocks are expected to be received. In the remaining time, the background tuner is free to demodulate other signals to support a diversity or other function. If a data block is not received, or not received when expected, the background tuner returns to demodulating one or more other frequencies after a predetermined time interval has elapsed.
Abstract:
A radio receiver having multiple AM/FM tuners. A first tuner and a second tuner may be connected with an antenna for generating a first and second composite audio output signal. A dual input digital signal processor may be connected with the first tuner and the second tuner. The first and second composite audio output signals are processed by the dual input digital signal processor to generate a first audio output signal and a second audio output signal. A first audio power amplifier may be connected with the dual input digital signal processor for receiving the first audio output signal and a second audio power amplifier may be connected with the dual input digital signal processor for receiving the second audio output signal.
Abstract:
A broadcast receiver 200 includes a receiver/decoder 210. The receiver 200 receives a broadcast channel selected by a user from a plurality of broadcast channels available in a broadcast network The receiver makes signals broadcast via the selected channel available to the user. User input means 230 enable the user to specify a user interest profile 400 based on at least one category of preference 410, 420, 430. An installer 220 install of all channels available in the broadcast network only those channels that meets the user interest profile 400.