Abstract:
A dataconferencing system comprises an imaging device adapted to generate an image of a document. The system also comprises a light source adapted to generate light proximate to the document for generating the image. A monitor application accessible by a processor is adapted to detect a change corresponding to the document. A lighting application accessible by the processor is adapted to automatically activate the light source in response to the detected change.
Abstract:
The invention provides an adjustment jig provided with a pattern for adjusting the direction of a reading line of a scanner which reads a target image line by line, which comprises a holder section for holding the scanner, a first pattern provided adjacent to a target reading line to be read by the scanner when the reading line direction of the scanner held is correctly adjusted, and a second pattern provided adjacent to the target reading line on the side opposite to the first pattern with the target reading line positioned therebetween, the second pattern being different from the first pattern in the brightness of at least one of hues which can be read by the scanner or in the width thereof in the reading line direction.
Abstract:
Disclosed is an image reading apparatus including: an original transporting device for transporting an original; an image reader for reading an image of the original in a first reading region or a second reading region while transporting the original by the original transporting device; and a correcting device for correcting image data read in the second reading region by the image reader so as to give the image data the same white level as image data read in the first reading region based on the ratio of the white level of the second reading region to that of the first reading region.
Abstract:
A multiplied resolution, single pass flatbed scanner having a CCD sensor of n pixels with a scan width of W, which gives a subject pixel center to center distance of W/n, two independently moveable carriages capable of incremental advancement of W/2 n so that for each read of a scan line Y, two reads of all segments of X along the scan line Y are taken, with each segment of X having a width of half pixel distance, W/2 n, and each line Y having a height of half pixel distance, W/2 n, to thereby double the resolution.
Abstract:
A method and apparatus for reducing artifacts in an imaging system by directing a stream of air onto the beam deflection assembly of the imaging system. An air displacement system, such as a fan assembly or the like, is oriented to direct, a stream of air onto the rotating deflector element of the beam deflection assembly. The stream of air is positioned to distribute a substantially uniform amount of air around the rotating deflector element.
Abstract:
The invention relates to a CMOS image sensor that an be embedded in portable imaging systems. This high spatial resolution and low bit resolution CMOS area image sensor not only enables portable imaging systems such as cellular fax phone, portable copy machines, barcode reader, but also it can be fabricated in standard digital CMOS processes, particularly at 0.35 micron and below. This invention also discloses several portable imaging systems using such a CMOS image sensor. This invention further discloses a CMOS image sensor that has variable spatial resolution and bit resolution. Starting as a high spatial resolution low-bit resolution image sensor, the high bit-resolution is achieved by combining information from a group of nearest-neighbor pixels into a single super-pixel via spatial oversampling. This variable CMOS image sensor can be used in a multiple function imaging device for both document and video imaging, or photography.
Abstract:
A scanning method in which a scanning head moves back and forth to scan a paper sheet located in a scanning window is disclosed. The method of the present invention includes the steps of a) making the paper sheet go forward a first distance into the scanning window; b) the scanning head scanning a portion of the paper sheet; c) the transmission mechanism driving the scanning head to move a second distance in a first direction, wherein the second distance is smaller than the first distance; d) repeating the steps b) and c) until the scanning head completely scans a plurality of portions of the paper sheet in the scanning region; e) repeating the steps a), b), c) and d), except that the scanning head moves in a second direction opposite to the first; f) repeating the steps a), b), c), d), and e), the movement of the scanning head alternating between a first and second direction, until the scanning head completely scans the paper sheet to be scanned.
Abstract:
The image transfer apparatus includes a transmission type image display device, a light source and a parallel rays generating element, and light that is irradiated from the light source, made into substantially parallel rays by the parallel rays generating element, and transmitted through the image display device to expose a photosensitive recording medium and a display image displayed on the image display screen is transferred to the photosensitive recording medium. This apparatus further includes a moving device for moving the parallel rays generating element and the image display device relatively during the transfer.
Abstract:
An imaging apparatus (10) for forming images from digital data, typically for printing or projection, the apparatus employing a spatial light modulator (30). The spatial light modulator (30) has a mounting (70) that is flexible in at least one direction in the plane that contains the surface of the spatial light modulator (30). An actuator (80) moves the mounting (70) at a speed that is at least a multiple of the refresh rate of the spatial light modulator (30), causing the movement of the spatial light modulator (30) to effect dithering of output pixels. This enlarges the effective pixel size to improve fill factor and reduce pixelization anomalies.
Abstract:
A stagger sensor and a method for improving modulation transfer function. The method of using the stagger sensor for improving modulation transfer function can be applied to scan an object. The stagger sensor includes a plurality of sensing modules. The method of increasing scanning resolution includes retrieving reference digital data and processing digital data of a computed pixel obtained from an object scanning operation.