Methods for charge-titrating particle assembly, and structures produced therefrom

    公开(公告)号:US10189718B1

    公开(公告)日:2019-01-29

    申请号:US15241536

    申请日:2016-08-19

    摘要: Methods to fabricate tightly packed arrays of nanoparticles are disclosed, without relying on organic ligands or a substrate. In some variations, a method of assembling particles into an array comprises dispersing particles in a liquid solution; introducing a triggerable pH-control substance capable of generating an acid or a base; and triggering the pH-control substance to generate an acid or a base within the liquid solution, thereby titrating the pH. During pH titration, the particle-surface charge magnitude is reduced, causing the particles to assemble into a particle array. Other variations provide a device for assembling particles into particle arrays, comprising a droplet-generating microfluidic region; a first-fluid inlet port; a second-fluid inlet port; a reaction microfluidic region, disposed in fluid communication with the droplet-generating microfluidic region; and a trigger source configured to trigger generation of an acid or a base from at least one pH-control substance contained within the reaction microfluidic region.

    Cerium Oxide Nanoparticle Compositions and Methods

    公开(公告)号:US20180339913A1

    公开(公告)日:2018-11-29

    申请号:US15956468

    申请日:2018-04-18

    IPC分类号: C01F17/00 A61K33/24 A61K9/51

    摘要: Cerium oxide nanoparticles (CNPs) have been proven to exhibit antioxidant properties attributed to its surface oxidation states (Ce4+ to Ce3+ and vice versa) mediated at the oxygen vacancies on the surface of CNPs. Different anions in precursor cerium salts were used to prepare CNPs resulting in disclosed CNPs with varying physicochemical properties such as dispersion stability, hydrodynamic size, and the signature surface chemistry. The antioxidant catalytic activity and oxidation potentials of different CNPs have been significantly altered with the change of anions in the precursor salts. For one, CNPs prepared using precursor salts containing NO3− and Cl− ions exhibited increased antioxidant activity than previously thought possible. The change in oxidation potentials of CNPs with the change in concentration of the nitrate and chloride ions indicates the disclosed CNP's have different surface chemistry and antioxidant properties. These compositions and methods of their synthesis are disclosed.