Abstract:
A planographic printing plate precursor having an intermediate layer containing a copolymer containing structural units represented by Formulae (1), (2) and (3) below, and a image forming layer, in this order on a support, wherein R1, R2 and R3 each represent a hydrogen atom, a substituent having from 1 to 30 carbon atoms, or a halogen atom, L1 represents a single bond or a (n+1)-valent connecting group, n represents an integer of from 0 to 10, L2 represents a single bond or a (m+1)-valent connecting group, X represents a carboxylate ion, M represents a counter cation necessary for neutralization of charge, m represents an integer of from 1 to 10, and Y represents a substituent having from 0 to 30 carbon atoms, provided that Y does not represent a carboxy group and does not represent the same constituent as (XM).
Abstract:
A plate making method of a lithographic printing plate precursor includes: exposing a lithographic printing plate precursor including an image-recording layer and a support; and developing the exposed lithographic printing plate precursor to prepare a lithographic printing plate, wherein the developing includes, in the following order, (i) a process of removing an unexposed area of the image-recording layer with a gum solution, (ii) a process of washing with water and (iii) a process of oil-desensitizing a non-image area with a gum solution.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits excellent on-press developability, nonimage area fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a hydrophilic support and has thereon a photopolymerizable layer that contains at least one selected from the group consisting of a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a sulfonamide group and a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a cyclic structure derived from a maleimide. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A method for making a lithographic printing plate includes the steps of providing a heat-sensitive lithographic printing plate precursor including on a support having a hydrophilic surface or which is provided with a hydrophilic layer, a heat-sensitive coating; image-wise exposing the precursor with IR-radiation or heat; and developing the image-wise exposed precursor with an alkaline developing solution, wherein an anti-sludge agent is present in the precursor or in the developing solution or in the precursor and the developing solution, and wherein the anti-sludge agent is a 5-membered heteroaromatic compound, including —NH— group wherein the hydrogen is capable of being deprotonated in the alkaline developing solution, selected from the group consisting of an optionally substituted benztriazole, 1,2,3-triazole, tetrazole, or indazole compound. According to the above method, the formation of sludge is inhibited or reduced.
Abstract:
A lithographic printing plate precursor can be used to prepare a printing plate using thermal ablation. The precursor has a non-thermally ablatable first layer on a substrate. Over the first layer is a thermally ablatable outer layer that includes an IR absorbing compound in an ablatable polymeric binder. The first layer includes a sol gel as a continuous inorganic matrix and a discontinuous inorganic phase (inorganic particles) dispersed therein.
Abstract:
A directly imageable waterless planographic printing plate precursor includes at least a heat sensitive layer and a silicone rubber layer formed on a substrate in this order and has a high sensitivity not only immediately after the precursor production but also after the passage of time. In the directly imageable waterless planographic printing plate precursor, the heat sensitive layer contains liquid bubbles filled with a liquid with a boiling point in the range of 210 to 270° C. A production method comprises applying a solution of a heat sensitive layer composition containing a solvent with a solubility parameter of 17.0 (MPa)1/2 or less and a boiling point in the range of 210 to 270° C. and a solvent with a solubility parameter of more than 17.0 (MPa)1/2 over a substrate or a substrate coated with a resin layer, drying the solution of a heat sensitive layer composition to form a heat sensitive layer, and applying a silicone rubber layer composition over the heat sensitive layer to form a silicone rubber layer.
Abstract:
The lithographic printing plate support includes an aluminum plate and an anodized film formed on the aluminum plate and micropores extend in the anodized film in a depth direction from its surface opposite from the aluminum plate. Each of the micropores includes a large-diameter portion having a predetermined shape and a small-diameter portion having a predetermined shape. The lithographic printing plate support has excellent scratch resistance and is capable of obtaining a presensitized plate which exhibits excellent on-press developability and enables a lithographic printing plate formed therefrom to have a long press life, and excellent deinking ability in continued printing and after suspended printing.
Abstract:
A lithographic printing plate precursor comprising: a support; and at least one layer comprising an image-recording layer, the image-recording layer comprising (A) an infrared absorber, (B) a polymerization initiator, (C) a polymerizable compound, and (D) a binder polymer, wherein the image recording layer is capable of being removed with at least one of a printing ink and a fountain solution, wherein at least one of said at least one layer comprises a copolymer having (a1) a unit comprising at least one ethylenically unsaturated bond, and (a2) a unit comprising at least one functional group interacting with a surface of the support. And a lithographic printing method in which the lithographic printing plate precursor is used. The copolymer preferably has a hydrophilic segment. The copolymer preferably is contained in an undercoat layer formed between the support and the image-recording layer.
Abstract:
The present invention provides a photosensitive recording material having a support, and a photosensitive layer and a protective layer formed in this order on or above the support. The photosensitive layer contains a polymerization initiator, a sensitizing agent, and a polymerizable compound. Further, the protective layer contains a water-insoluble and alkali-soluble dye that has an absorption wavelength region different from the absorption wavelength region of the sensitizing agent, and the dye is dispersed in a solid state in the protective layer. The present invention also provides a planographic printing plate precursor including the photosensitive recording material, a stack of the photosensitive recording materials, and a stack of the planographic printing plate precursors.
Abstract:
The present invention provides a curable composition containing at least one species selected from polymerizable monomers represented by the following formulas (I) to (III) and a polymerization initiator, and a planographic printing plate precursor including the same. The curable composition can be cured with high sensitivity due to laser light exposure or the like, and the inhibition of polymerization due to oxygen is controlled. The composition has excellent solubility in a developer or a solvent.