Abstract:
Systems, methods, and devices for communicating in a wireless network are provided. In one aspect, a method for wireless communication is provided. The method includes inserting a plurality of scrambler seeds into a data unit comprising a plurality of data portions, each scrambler seed associated with a respective data portion of the plurality of data portions. The method includes scrambling each data portion at least in part based on the associated scrambler seed. The method includes transmitting the data unit. The data portions may comprise code words or at least one media access control protocol data unit. The scrambler seed may be inserted in reserved bits of the delimiter field. The scrambler seed may be inserted in a delimiter signature field of the delimiter field.
Abstract:
Systems, methods, and devices for communicating in a wireless network are provided. In one aspect, a method for wireless communication is provided. The method includes inserting an indication of a scrambling sequence into a signal field of a first data unit. The signal field occurs before a service field in the first data unit. The method includes scrambling at least a portion of the first data unit based at least on the inserted indication of the scrambling sequence in the signal field of the first data unit. The method includes transmitting the first data unit. The signal field is transmitted at a first data rate and the service field is transmitted at a second data rate greater than the first data rate. The indication of the scrambling sequence comprises either a scrambler seed or one or more parameters indicative of the scrambling sequence.
Abstract:
Methods, apparatus, and computer readable medium manage the utilization of a wireless medium capable of transmitting multiple channels of data simultaneously. A plurality of messages are stored in a queue for transmission on the wireless medium. A wireless medium utilization for transmitting a first message over the multi-channel medium is determined. Each of the messages stored in the queue is delayed based at least in part on the determined wireless medium utilization. In some embodiments, a message may be delayed based at least in part on a state of a connection used by the message. For example, if the connection is in a ramp-up or slow start phase, the message may not be delayed. Messages may also be delayed based on a type of the message. For example, messages generated by interactive applications, such as web browsers or instant messaging applications may not be delayed.
Abstract:
One aspect disclosed is a method in a wireless communications system including a first primary channel having a first frequency spectrum bandwidth and a second primary channel having a second frequency spectrum bandwidth, wherein the second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes performing a first and a second back-off procedure at least partially in parallel, the first back-off procedure based on whether the first primary channel is idle, and the second back-off procedure based on whether the second primary channel is idle, and transmitting a wireless message based on whether the first or the second back-off procedure completes first.
Abstract:
Systems, methods, and devices for reducing collisions in a wireless communications network are described herein. In some aspects, a receiver receives a paging message. The paging message includes an ordering and a multiplier. A processor determines a first wake-up time based on the ordering and the multiplier. The wireless device wakes up at the determined wake-up time. The wireless device receives data via the receiver.
Abstract:
Systems, methods, and devices for communicating frames in a wireless network are disclosed. In one aspect, a method includes determining a protocol version field value for a frame control field of a wireless message, generating the frame control field, the frame control field generated to comprise a protocol version field having the protocol version field value, and a type field having a length based on the protocol version field value, generating the wireless message, the wireless message comprising a media access control header, the media access control header comprising the frame control field; and transmitting the wireless frame.
Abstract:
A method includes determining, at a first transmitter, whether to permit reuse of a first transmit opportunity (TXOP) associated with a message. The method further includes sending a portion of the message from the first transmitter to a first receiver. The portion of the message indicates whether reuse, by a reuse transmitter, of the first TXOP is permitted. When reuse of the first TXOP is permitted, the reuse transmitter is permitted to send a second message while the first transmitter sends a second portion of the message to the first receiver during the first TXOP.
Abstract:
Systems, methods, and devices for concurrently allowing station-to-station transmissions and access point-to-station transmissions are described herein. In some aspects, a method comprises receiving, from a first device, a peer request to send message requesting a first time for transmissions with a second device. The method further comprises reserving the first time for transmissions between the first device and the second device. The method further comprises transmitting a coordination message to the first device and the second device. The coordination message may indicate that the first time is reserved for transmissions between the first device and the second device. The method further comprises transmitting a first data packet to a third device during a time other than the first time. The first device may transmit a second data packet to the second device during the first time.
Abstract:
Systems, methods, and devices for wireless communication are disclosed herein. One aspect of the disclosure provides a method of transmitting on a wireless communication network. The method includes transmitting to one or more first devices in a first portion of a bandwidth, the one or more first devices having a first set of capabilities, simultaneously transmitting to one or more second devices in a second portion of the bandwidth, the one or more second devices having a second set of capabilities, and wherein the transmission comprises a preamble which includes an indication for devices with the second set of capabilities to locate a frequency band in the bandwidth for symbols containing a set of transmission parameters for devices with the second set of capabilities, and where the indication is sent so as to have no substantial impact on a preamble decoding of devices with the first set of capabilities.
Abstract:
Techniques for proving enterprise mode security for relays are disclosed. For example, enterprise mode security based on IEEE 802.1x is provided for relays or other similar devices to extend the coverage of access point hotspots or other similar access point use cases. According to one aspect, a relay incorporates an authentication client associated with an authentication server. According to another aspect, a four address format is employed for tunneling messages via a relay between a station and an access point. According to another aspect, a cryptographic master key associated with an access point and a station is provided to a relay to enable the relay to be an authenticator for the station.