Abstract:
A receptacle block defines one or more sockets at which plugs may be received. Each socket contains a first set of contacts and a second set of contacts. Each socket also includes a sensing contact that interacts with the second set of contacts to close an electrical switch. For example, the sensing contact can interact with an arm extending from one of the contacts of the second set. Closure of the switch can be detected and interpreted to indicate that a plug has been received at the respective socket.
Abstract:
A patch cord for an intelligent patching system is provided. The patch cord is a ten-wire patch cord having a patch panel plug and a switch plug. The patch panel plug contains ninth and tenth wire contacts that interface with ninth and tenth wire contacts of an intelligent patch panel port. The switch plug is provided with a plunger-style switch that enables the intelligent patch panel to determine when the switch plug is plugged into a switch port. The switch plug is also provided with LED's and circuitry that controls the LED's.
Abstract:
A telecommunications patch panel is provided having a plurality of connector modules rotatably mounted to a frame member. Each connector module has a front face and an opposite facing rear face, and each front face includes a plurality of connector jacks. Each rear face includes a plurality of wire termination blocks. The wire termination blocks are electrically connected to the connector jacks. Each connector module is rotatable about a rotation axis relative to the frame member. A lock selectively locks each connector module to the frame member as desired. The connector jacks and the connector modules are arranged in linear arrays perpendicular to the axis of rotation.
Abstract:
The present disclosure provides for electrical connectors or jack assemblies/housings for use in voice/data communication systems. More particularly, the present disclosure provides for modular jack assemblies that include a movable locking member. The present disclosure provides for improved systems/designs for jack assemblies/housings that are easily secured and/or unsecured to or from a jack panel or jack faceplate. In exemplary embodiments, the present disclosure provides for convenient, low-cost and effective systems and methods for easily securing and/or unsecuring jack assemblies/housings to or from a jack panel/faceplate (e.g., in the field) by utilizing advantageous modular jack assemblies that include a movable locking member, and related assemblies.
Abstract:
A pair manager for use in securing a twin-axial cable to a printed circuit board is described. The pair manager comprises a generally block-shaped portion containing a pair of channels. The channels extend from the front face to the rear face of the block-shaped portion. An integral flange and a pair of integral fingers extend perpendicularly from the front face of the block-shaped portion. The flange extends generally from the center of the front face and the fingers extend from opposite edges of the front face. The fingers and flange function as a partial shield cavity around each pair of conductors. This design helps to maintain better impedance matching when connecting twin-axial cables to a printed circuit board.
Abstract:
A connector assembly for mating with a multi-port electrical connector includes a shielded housing having a plurality of discrete shielded plug chambers and a plurality of plugs received in corresponding plug chambers. Each of the plugs are shielded from one another by the shielded housing, and the plugs are configured for simultaneous mating with the multi-port electrical connector, wherein each plug is received in a different port of the electrical connector. The connector assembly also includes a latch assembly coupled to the shielded housing. The latch assembly engages the shielded housing and is configured to engage the multi-port electrical connector to electrically common the shielded housing and the multi-port electrical connector.
Abstract:
A plug assembly includes a sleeve and a connector assembly. The sleeve includes a first axial end portion and a second axial end portion. The second axial end portion defines a plurality of channels. The connector assembly is engaged to the second axial end portion of the sleeve. The connector assembly includes a connector body, a plurality of contacts and a plug. The plurality of contacts is disposed in the connector body. Each of the plurality of contacts includes a first end and a second end. The first ends of the plurality of channels are disposed in the plurality of channels of the sleeve. The plug is engaged to the connector body. The plug includes a plurality of grooves through which the second ends of the plurality of contacts are accessible.
Abstract:
According to one embodiment, an electronic apparatus is configured to be provided with a communication line socket provided on a backside surface of a casing of the electronic apparatus, metallic terminals provided in the communication line socket, and abutment sections each of which is provided in the vicinity of the communication line socket, and is given a predetermined height from the metallic terminals in an insertion direction of the communication line socket. By virtue of the above configuration, even if it is tried to insert a wrong plug into the communication line socket by mistake, the wrong plug abuts against the abutment sections, and the insertion is stopped on the way.
Abstract:
An outlet for a LAN, containing an integrated adapter that converts digital data to and from analog video signals, allowing the use of analog video units in a digital data network or telephone line-based data networking system, eliminating the need for digital video units or external adapter. The outlet may include a hub for connecting an analog video signal via an adapter, and retaining the data network connection. In such an environment, the data networking circuitry as well as the analog video adapters are integrated into a telephone outlet, providing for regular telephone service, analog video connectivity, and data networking as well. In such a configuration, the outlet would have a standard telephone jack, an analog video jack and at least one data networking jack. Such outlet can be used to retrofit existing LAN and telephone wiring, and original equipment in new installations.
Abstract:
A telecommunications patch panel is provided having a plurality of connector modules rotatably mounted to a frame member. Each connector module has a front face and an opposite facing rear face, and each front face includes a plurality of connector jacks. Each rear face includes a plurality of wire termination blocks. The wire termination blocks are electrically connected to the connector jacks. Each connector module is rotatable about a rotation axis relative to the frame member. A lock selectively locks each connector module to the frame member as desired. The connector jacks and the connector modules are arranged in linear arrays perpendicular to the axis of rotation.