Abstract:
The present invention relates to a method of manufacturing a blade for a wind turbine, wherein the blade is made in one or more moulds; and wherein the blade has integrally moulded root bushings in the root of the blade for direct or indirect attachment to a hub in a wind turbine. The novel aspect of the invention is that the root bushings (203) in the root (201) of the blade are leveled by shortening of at least one of the root bushings prior to the blade being removed from a supporting mould (205). The invention further relates to a blade made in accordance with the method and a leveling unit (207) for leveling the root of the blade, wherein the leveling unit comprises means for mounting on a mould.
Abstract:
The invention relates to a method of cutting off laminate layers for use in a fibre-reinforced laminate object (701) comprising a number of combined laminate layers (703) wherein, along a section of the at least one rim of the laminate layer, a tapering cut is performed through the thickness of the laminate layer, whereby the thickness of the laminate layer is reduced. Since not only the number of laminate layers, but also the thickness of the individual laminate layers are reduced, a laminate layer is accomplished that can be used in a laminate object, by which both the issues of areas rich in resin, air pockets and the risk of delamination are reduced. The invention also relates to a laminate layer for use in a fibre-reinforced laminate object comprising a number of combined laminate layers and a fiber-reinforced laminate object in the form of the blade of a wind turbine, wherein the blade of the wind turbine comprises a number of combined laminate layers.
Abstract:
The invention relates to a wind turbine blade and a transitional shell blank for the manufacture of the shell of a wind turbine blade, the blade or the transitional shell blank being made of fibre-reinforced polymer including a first type of fibres (1, 3, 6) of a first stiffness and a first elongation at breakage, and a second type of fibres (2, 5, 7) of a different stiffness and a different elongation at breakage. According to the invention the two types of fibres are distributed in the polymer matrix. When seen in a sectional view perpendicular to longitudinal direction of the blade or the transitional shell blank, the quantitative ratio of the two types of fibres varies continuously in the longitudinal direction of the blade or of the transition shell blank.
Abstract:
Provided is a composite structure having a longitudinal direction and a transverse direction, having a longitudinally extending fiber insertion having a plurality of fiber layers, a first surface, a second surface, a first side, and a second side; a fiber insertion first zone at the first side of the fiber insertion; a fiber insertion second zone at the second side of the fiber insertion; an intermediate zone separating the first zone and the second zone; a distribution medium adjacent at least one of the first side and the second surface of the intermediate zone, the distribution medium comprising a resin distribution network; and a cured resin impregnating at least the resin distribution network and the fiber insertion.
Abstract:
A wind turbine blade (10) for a rotor of a wind turbine (2) is provided with a longitudinally extending flow guiding device (70, 170) attached to the profiled contour. The flow guiding device comprises: a base (90, 190) having a first longitudinal end (91, 191) nearest the root end (16) and a second longitudinal end (92, 192) nearest the tip end (14), a first side (93, 193) nearest the leading edge (18) and a second side (94, 194) nearest the trailing edge (20), as well as a first surface (95, 195) and a second surface (96, 196), the first surface of the base being attached to the profiled contour, and the second surface facing away from the profiled contour. A longitudinally extending substantially plate-shaped element (97, 197) protrudes from the second surface (96, 196) of the base (90, 190).
Abstract:
The present subject matter concerns a method and an apparatus for cutting fiber mats where the cutting is effected with a mechanical automatic tool, where cutting of the fiber mat is effected so that the cut surface on the fiber mat can be varied from an angle greater than 0° to an angle less than 180° in relation to both surfaces on the fiber mat, where it is the variable position of the fiber mat relative to the direction of movement and cutting of the cutting tool that determines the angle of the cut. A fiber mat may be cut with a cut which is particularly adapted to the specific piece of fiber mat which is cut. It is thus possible to have a production where various requirements to cut faces in the fiber mats can be met.
Abstract:
A method of manufacturing a shell construction part of a wind turbine blade, the shell construction part being made of a fibre reinforced polymer material including a polymer matrix and fibre reinforcement material embedded in the polymer matrix. The method comprises the steps of a) providing a forming structure comprising a mould cavity and having a longitudinal direction, b) placing the fibre reinforcement material in mould cavity, c) providing a resin in the mould cavity simultaneously with and/or subsequently to step b), and d) curing the resin in order to form the composite structure, wherein at least 20% by volume of the fibre reinforcement material consists of metallic wires.
Abstract:
A method of manufacturing a longitudinally extending composite structure including a shell part comprising a fiber reinforced polymer material including a polymer matrix and fiber material embedded in the polymer material is described. The shell part is manufactured in a closed mold comprising at least a first outer mold part having a first forming surface and a second outer mold part having a second forming surface. The method comprises the steps of: arranging a first fiber material in the first forming surface of the first outer mold part, arranging a pre-fabricated longitudinally extending reinforcement element, such as a beam or a web, on top of the first fiber material, arranging a second fiber material in the second forming surface of the second outer mold part, and sealing a polymer foil above the second fiber material so as to retain the second fiber material against the second forming surface.
Abstract:
A use of a core block for an impregnation process as well as a composite structure comprising such a core block is described. The core block has a first surface and a second surface, and a number of first grooves is formed in the first surface of the core. Furthermore, a number of second grooves is formed in the second surface of the core. The first grooves have a first height (h1) and a bottom, and the first grooves and the second grooves are part of a resin distribution network formed in the core block. The distance (t) between the bottom of the first grooves and the second surface of the core block is of such a size that the core block is flexible along the first grooves. Additionally, the sum of the first height and the second height is larger than the thickness of the core block, and at least one of the first grooves in the first surface of the core block crosses at least one of the second grooves in the second surface of the core block.
Abstract:
A transportation and storage system for a wind turbine rotor blade comprises a tip end frame assembly comprising a tip end receptacle and a tip end frame. The tip end receptacle comprises an upwardly open tip end-receiving space for receiving a portion of the tip end of the blade and having a supporting surface for supporting the blade, a lower surface allowing the tip end receptacle to rest upright on a substantially horizontal surface, such as the ground, and releasable retaining means for releasably retaining the tip end of the blade in the receiving space of the tip end receptacle. The tip end frame comprises an upwardly open receptacle-receiving space for receiving the receptacle and provided with positioning means for positioning the receptacle in the tip end frame. A base part defines a bottom surface allowing the tip end frame to rest upright on the ground.