Abstract:
An axial swirler, in particular for premixing of oxidizer and fuel in gas turbines, includes a series of swirl vanes with a streamline cross-section. Each swirl vane has a leading edge, a trailing edge, and a suction side and a pressure side extending each between the leading and trailing edges. The swirl vanes are arranged around a swirler axis, wherein the leading edges extend essentially in radial direction. Flow slots are formed between the suction side of each swirl vane and the pressure side of its nearest neighboring swirl vane. Furthermore, at least one swirl vane has a discharge flow angle between a tangent to its camber line at its trailing edge and the swirler axis that is monotonically increasing with increasing radial distance from the swirler axis. The invention also relates to a burner with such a swirler and a method of operating the burner.
Abstract:
A head assembly for a pulverized coal nozzle includes removeable wear-resistant inserts having vanes. The vanes may be flat or curved to direct a stream of air and pulverized solid fuel particles from the inlet port toward the outlet port. The curved vanes curve in two dimensions to evenly distribute the stream of air and pulverized solid fuel away from the outer surfaces reducing wear and corrosion. The pipe elbow has a removable cover that allows for easy access. The vanes are attached to a wear-resistant replaceable liner thus allowing them to be easily removed and replaced. The wear-resistant liner may be made from several parts for ease of removal and replacement.
Abstract:
Disclosed herein is an ignition system for igniting a flame in a combustion chamber comprising a conduit secured to a windbox wall of the combustion chamber; where the conduit includes a fuel conduit for delivering fuel to the combustion chamber; and a single ignitor and flame rod assembly having a first end and a second end; where the first end comprises a high energy ignitor tip; where the second end is in electrical communication with an electrical power source; where the electrical power source comprises a spark transformer that comprises a primary winding and a secondary winding; a flame monitoring ignitor; where the flame monitoring ignitor is in direct electrical communication with a ground contact and with a low voltage side of the secondary winding; where the flame monitoring ignitor is disposed between the low voltage side of the secondary winding and a ground contact; and a transient voltage suppressor; that is disposed in parallel with the flame monitoring ignitor.
Abstract:
The invention relates to a method for automatic regulation of a system in which a plurality of parameters characteristic of the system are measured and in which at least one control parameter (u) is applied as a function of the measured parameters (y). The method includes choosing a nominal operating point of the system, and defining a nominal model (Mn) of the system at this nominal operating point is determined, and estimated characteristic output parameters (yr) corresponding to measurable characteristic parameters (y) are determined from said nominal model. The method further includes determining errors between at least one of the measured characteristic output parameters (y) and at least one of the estimated characteristic output parameters (yr), and applying at least one control parameter of the system as a function of the errors determined to reduce the error between at least one of the estimated characteristic output parameters (yr) and the corresponding at least one measured value of the measured characteristic output parameters (y).
Abstract:
A method of treating effluent seawater generated in the removal of sulfur dioxide from a process gas by contacting the process gas containing sulfur dioxide with seawater, using inclined aeration and mixed auto recovery is provided. Additionally, an inclined aeration and mixed auto recovery seawater oxidation basin system for treating effluent seawater generated in the removal of sulfur dioxide from a process gas by contacting the process gas containing sulfur dioxide with seawater is provided.
Abstract:
The fabric filter includes a first chamber with an inlet, a second chamber with an outlet, filter bags housed in the first chamber and having mouths that open in the second chamber and defining at least a bag nest, manifolds with nozzles facing the mouths and housed in the second chamber, a flow direction along which during operation a dirty gas to be treated in the fabric filter enters the bags nest. Angles between the manifolds and the flow gas direction are bigger than 45 degree.
Abstract:
A gas stripper system for purification of a primary coolant contaminated in cooling a nuclear reactor is provided. The gas stripper system includes a gas stripper column and a condenser arrangement. The column is adapted to receive the liquid phased contaminated primary coolant. The column defines top, bottom and middle sections and includes a distributor member, a re-boiler member and a separation member disposed therealong. The distributor member, a re-boiler member and a separation member with structured packing are configured such that maximum contact between the liquid phased primary coolant and gaseous phased primary coolant is made. Moreover, the condenser arrangement is configured to the gas stripper column to receive and condense the vapour phased primary coolant.
Abstract:
A heating system for a thermal electric power station water circuit includes an extraction system for extracting water from a condenser and a first set of heaters including a first water inlet fed with a first fraction of a flow coming from the extraction system, and a input for heating the extracted water. A second set of heaters includes a heater arranged in series with the extracted-water inlet of the first set, and a steam input for heating the extracted water. A condensate cooler includes a first water inlet fed by a condensate outlet of the second set of heaters, a second water inlet fed with a complementary fraction of the extracted-water flow, a first outlet for cooled condensate to be reinjected into the condenser, and a second outlet for heated water so that water leaving the first set of heaters is mixable with water from the second outlet.
Abstract:
Omnidirectional moving device and system are provided. The device includes a chassis member, at least a pair of treading members and a wheel arrangement. Each of the treading members can move in same or opposite directions. Each of the treading members, when moving in same direction, may enable the wheel arrangement to move in the same direction as thereof so as to enable the device to be moved in a second direction (D2); and when adapted to be moved in opposite directions, enables the wheel arrangement to swings at a position thereof to enable the device to be moved in a third direction (D3).
Abstract:
The invention relates to a method for automatic regulation of a system in which a plurality of parameters characteristic of the system are measured and in which at least one control parameter (u) is applied as a function of the measured parameters (y). The method includes choosing a nominal operating point of the system, and defining a nominal model (Mn) of the system at this nominal operating point. The method further includes determining a set of representative models ([Mk]) of the possible variations relative to the nominal model (Mn) and parameterizing the error of the nominal model (Mn) of the system by decomposition ([δik]) over all the errors between the models of the set of models ([Mk]) representative of the possible variations and the nominal model (Mn). The method also includes minimizing a given optimization criterion (J) by varying at least one of the previously obtained parameters ([δik]) of the error (Δ) relative to the nominal model (M) of the system. The invention also relates to the regulation device configured for applying the method.