Abstract:
A solid-state imaging device having: (a) a pixel array with an oblique pixel pattern in which pixels are obliquely disposed, an odd-numbered row vertical signal line in an odd-numbered row vertical signal line group being connected to each column of odd-numbered row pixels and an even-numbered row vertical signal line in an even-numbered row vertical signal line group being connected to each column of even-numbered row pixels; (b) a row selector for separately selecting an odd-numbered row and an even-numbered row of the oblique pixel pattern; (c) an odd-numbered row column processing circuit group including column processing circuits and connected to the odd-numbered row vertical signal line group, for adding signals of the odd-numbered row pixels between columns; (d) an even-numbered row column processing circuit group including column processing circuits and connected to the even-numbered row vertical signal line group, for adding signals of the even-numbered row pixels in pixel columns; and (d) a column selector for selecting the column processing circuits of the odd-numbered row column processing circuit group and the column processing circuits of the even-numbered row column processing circuit group.
Abstract:
A condition for determining that an examination by a capsule endoscope 3 (body insertable device) completes is set in advance. When a predetermined time period has passed since the examination starts, and when received electric-field strength of receiving antennas A1 to An detected during a predetermined time period is not higher than a predetermined value, the examination is determined to have been completed. An examination completion determining unit C1 determines whether the condition is satisfied or not. According to the result of determination, a notification controller C2 makes a notifying unit 15 notify that the examination completes, and a power supply controller C3 stop power supply to a radio unit 2a. Thus, unnecessary power consumption is prevented and the completion of the examination by the body insertable device is recognized.
Abstract:
To provide a receiving apparatus capable of dealing with various uses with a simple configuration. The receiving apparatus includes an antenna unit and a receiving apparatus main body. The antenna unit includes a receiving antenna that receives a radio signal including image data transmitted by a capsule endoscope inserted in a subject, and the receiving apparatus main body is detachably attached to the antenna unit. The antenna unit functions such that it demodulates the radio signal received via the receiving antenna into a baseband signal. The receiving apparatus main body acquires the image data based on at least the baseband signal.
Abstract:
A method of adaptive local image similarity measurement based on the L1 distance measure is described. A relationship between distance measures is used to estimate appropriate thresholds for various patch sizes. The choice of patch size depends on the degradations contained in the image and the application. The relation between the similarity measures is established using the distribution of L1 distances for various patch sizes. For larger degradations, similarity measure with a bigger patch size is employed. For lesser imperfections, a smaller patch size produces acceptable results. To keep the computational overhead manageable, the smallest patch size that gives the desired image quality is employed.
Abstract:
The invention aims at providing communication timing changing method and device which are capable of changing timing of communication for setting control parameters used to determine operations of analog devices in the analog devices, respectively, over to another one not impeding any of the operation of the analog devices. An interface decoder decodes a control parameter communication signal outputted from a CPU, converts the resulting signal into control parameters, and preserves the resulting control parameters in a register. Interface encoders perform timing management based on a synchronous signal received from a synchronous signal generating circuit, read out the control parameters to be set in analog devices such as an image sensor driving circuit, a sample and hold circuit, and an ADC from a register, and communicate with the analog devices at good timing during a blanking period to set the control parameters in the analog devices, respectively.
Abstract:
Noise reduction is performed on the basis of characteristics of an image in a detection range. A noise reduction block 4′ performs a second-order differentiation process and a symmetry process to decide adjacent pixels with which noise reduction is preformed for an attention pixel. With the pixel level of the attention pixel in the detection range and the pixel levels of adjacent pixels used for noise reduction, an arithmetic mean processing section 16 calculates a mean value. A median filter 17 selects a median value. With the number of pixels used for noise reduction, it is determined whether the image in the detection range contains a flat portion, a ramp portion, or an edge. The mean value and the median value are weight-added with a weighted coefficient that are changed on the basis of characteristics of the image. The result is substituted for the level of the attention pixel. When the attention pixel is an isolated point, an all-pixel median filter section 31 selects a medium value of the levels of all the pixels in the detection range including the attention pixel and substitutes the median value for the level of the attention pixel.
Abstract:
An imaging apparatus for imaging an image using a solid-state image pickup device includes a first linear matrix operation unit configured to perform matrix conversion upon a color component of an image signal obtained by imaging using coefficients capable of improving color reproducibility; a second linear matrix operation unit configured to perform matrix conversion upon the color component using coefficients capable of achieving noise component reduction; a signal combining unit configured to combine image signals output from a plurality of signal processing systems each of which includes one of the first or second linear matrix operation units; and a combination ratio setting unit configured to set a combination ratio so that, when a subject is bright, an image signal output from the signal processing system that includes the first linear matrix operation unit can be combined in an amount larger than the image signals output from the other signal processing systems.
Abstract:
A receiving apparatus which is used while connected to a plurality of antennas, the receiving apparatus receiving a radio signal through the antennas to perform a predetermined process to the received radio signal, the radio signal being transmitted from a body-insertable apparatus inserted into a subject, includes a receiving antenna selection unit that selects the antenna which is suitable for reception of the radio signal when the radio signal is transmitted from the body-insertable apparatus; a sequential antenna selection unit that sequentially selects each of the plurality of antennas when performance inspection of the plurality of antennas is performed; and a signal processing unit that performs a predetermined process to the radio signal received through the antenna, the antenna being selected by the receiving antenna selection unit or the sequential antenna selection unit.
Abstract:
The claimed invention is directed to a communication apparatus connectable to a plurality of networks, which comprises a setting unit that adjusts and setting, in accordance with a communication condition of each of the plurality of networks, a communication hold period in which the communication apparatus does not communicate with any one of the plurality of networks; a notification unit that notifies each of the plurality of networks of the communication hold period set by said setting unit; and a stop unit that stops communication with the plurality of networks on the basis of the setting of the communication hold period, wherein said setting unit sets the communication hold period of each network so as to overlap portions of the communication hold periods of the plurality of networks without any overlap of communication participation times of the plurality of networks.
Abstract:
A receiving apparatus is for selecting and receiving a radio signal in a frame structure having an information body part including at least information body and an additional part including information for receiving field intensity measurement by using a plurality of antennas. The apparatus includes a controller that measures a receiving field intensity of not a first antenna which has received the information body in a transmission period of the additional part in a current frame but a second antenna, and measures a receiving field intensity of the first antenna in a transmission period of the information body part in the current frame, and if the receiving field intensity of the second antenna exceeds the receiving field intensity of the first antenna, selects and changes to the second antenna as the first antenna of a next frame.