Abstract:
Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.
Abstract:
Disclosed is an LCD and driving method thereof. The LCD according to the present invention generates modification image signals by considering image signals of present and previous frames, and then supplies data voltages corresponding to the generated modification image signals to the data lines. At this time, the value for modifying the present frame image signal varies according to a modification parameter that is at least one among a temperature, an image quality selected by a user, and an environment of the LCD.
Abstract:
A liquid crystal display according to the present invention includes a gray signal modifier connected with a frame memory outputting and storing data by a burst mode. The gray signal modifier receives a gray signal of current frame from a data gray signal source and stores it in the frame memory by the burst mode, and reads a gray signal of previous frame stored in the frame memory to generate and output a modified gray signal in consideration of a gray signal of current frame and a gray signal of previous frame. Data pins and instruction pins of the frame memory share buses interfacing with the gray signal modifier.
Abstract:
Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.
Abstract:
A method of gamma correction for an organic light emitting display device includes calculating a high-power voltage to be supplied in an emission period of the organic light emitting display device based on a gray-level range of an input image data for each frame, generating a gamma correction curve for the calculated high-power voltage based on a predetermined minimum gamma correction curve and a predetermined maximum gamma correction curve, performing a gamma correction on image data based on the gamma correction curve to generate gamma-corrected image data, and displaying the gamma-corrected image data on the organic light emitting display device.
Abstract:
An organic light emitting display is driven in a simultaneous (or concurrent) emission scheme. The organic light emitting display includes: a display unit including a plurality of pixels coupled to scan lines, control lines, and data lines; a control line driver for providing control signals to the pixels through the control lines; and a power driver for applying a power at different levels to the pixels of the display unit during a plurality of periods of one frame. The control signals and the power are concurrently provided to the pixels included in the display unit.
Abstract:
A display device includes a display panel, a gray scale converter, and a scale factor generator. The display panel includes a plurality of pixels. The gray scale converter is for converting gray levels of pixel data signals of a current frame by multiplying the pixel data signals of the current frame by a scale factor of the current frame. The scale factor generator is for comparing a conversion current value with an overcurrent prevention current value to generate the scale factor of the current frame.
Abstract:
A display substrate includes a driving element, a switching element, a gate line, a data line, a driving voltage line and an electroluminescent element. The driving element includes a driving control electrode formed from a first conductive layer, and a driving input electrode and a driving output electrode formed from a second conductive layer. The switching element includes a switching control electrode formed from the second conductive layer, and a switching input electrode and a switching output electrode formed from a third conductive layer. The gate and data lines are formed from the second and third conductive layers, respectively. The driving voltage line is formed from the third conductive layer. Thus, misalignment between upper and lower patterns may be prevented to improve the reliability of a manufacturing process and increase an aperture ratio, thereby enhancing display quality.
Abstract:
A display device includes a color converter, a timing controller, and a display panel. The color converter converts R, G, and B data into R′, G′, B′, and W′ data. The R′, G′, B′, and W′ data includes first component data and second component data. The timing controller provides the first component data to a data driver during a first driving time and provides the second component data to the data driver during a second driving time. The data driver provides gray level display voltages corresponding to the first component data and the second component data to a data line, and the display panel displays the R′, G′, B′, and W′ data in response to the gray level display voltage.
Abstract:
A display device includes a display unit including a plurality of pixels connected to a plurality of scan lines and a plurality of data lines, an inverse image processor configured to receive a first image data signal input from an external source and to generate a gray-inverted second image data signal, a controller configured to mix the first image data signal and the second image data signal alternately for each frame to generate a third image data signal, and to generate a driving control signal opening and closing a pair of shutter spectacles for each image frame displayed in the display unit, and a data driver configured to receive the third image data signal from the controller and to apply a corresponding data voltage to each of the plurality of data lines.