Abstract:
Patients suffering from acute renal failure must be diagnosed and treated quickly so that a physician can confidently prescribe either peritoneal dialysis or hemodialysis. In one way of quickly treating the patients, software is used to calculate a suitable peritoneal dialysis prescription without regard to how short or how long a dialysis cycle is used, and without regard to a total dialysate fluid volume for a therapy. For patients with suitable peritoneal membrane transport properties, the software program suggests that, at least over a short period of time, unexpectedly high ultrafiltrate volumes and high clearances may be achieved.
Abstract:
A hemodialysis system for operation with a blood source and a dialysate source, the system including: (i) a first machine portion including a blood pump; (ii) a blood cassette operatively connected to the blood pump such that the blood pump can pump blood through the blood cassette when the blood cassette is in fluid communication with the blood source; (iii) a dialyzer fluidly connected to the blood cassette; (iv) a second machine portion separate from the first machine portion, the second machine portion including a dialysate pump; and (v) a dialysate cassette separate from the blood cassette, the dialysate cassette operatively connected to the dialysate pump such that the dialysate pump can pump dialysate through the dialysate cassette when the dialysate cassette is in fluid communication with the dialysate source, the dialysate cassette being fluidly connected to the dialyzer.
Abstract:
In one embodiment, the application discloses a connecting assembly for connecting a wearable band comprising at least one connector body, at least one linker, at least one slot, wherein the slot is configured on the connector body or configured on the linker; wherein the linker is configured to accept the protrusion to reversibly connect the linker to the connector body; and wherein the linker and the connector body comprise of material selected from silicone or a silicone composite. The connecting assembly may be used to carry or store personal and safety or security items.
Abstract:
A USB device with a clock calibration function and a method for calibrating reference clocks of a USB device are provided. A USB 2.0 initial calibration is performed on the USB device in order to control an embedded oscillator (EMOSC) of the USB device to output a first reference clock compliance USB 2.0 specification and USB 3.0 specification during the initialization phase. After that, a USB 3.0 on-line calibration is performed on the USB device in order to control the EMOSC of the USB device to calibrate a second reference clock during a super-speed mode of USB 3.0 specification.
Abstract:
The present disclosure discloses a network device and/or method for providing data link layer (L2) and network layer (L3) mobility using level security keys. A first network device acting as a first level security key holder in a first network receives a first level security key holder identifier corresponding to a second network device in a second network. The first level security key holder identifier is originated from a client that roams from the second network to the first network. Moreover, the first network and the second network belong to a single roaming domain. Also, the network device transmits the first level security key holder identifier to the second network device and requests for corresponding first level security key. The network device then derives a second level security key and transmits a second level security key identifier the second level key holder in the first network.
Abstract:
A portable electronic device is provided. The portable electronic device includes a processor for providing encoding data and an LCD module coupled to the processor. The processor includes an encoder for encoding a frame data to generate the encoding data. The LCD module includes a driver and an LCD coupled to the driver. The driver includes a decoder for decoding the encoding data to obtain an image data. The LCD displays the image data.
Abstract:
A stylus includes a conductive rod, a circuit board, and an antenna. The conductive rod has a first opening. The circuit board is disposed in the conductive rod and includes a ground portion, wherein the conductive rod is electrically connected to the ground portion. The antenna includes a radiating portion and a feeding portion. The feeding portion is electrically connected to the circuit board and extends to the outside of the conductive rod via the first opening. The radiating portion is disposed at the outside of the conductive rod and is electrically connected to the feeding portion.
Abstract:
A display apparatus, an integrated circuit and method thereof are disclosed. The display apparatus includes a frame buffer, a controller circuit, and a display driver circuit. The frame buffer is configured to retain a plurality of image frames to be displayed. The controller circuit, coupled to the frame buffer, is configured to determine whether a change in the image frames has occurred and whether a refresh time is expired. The display driver circuit, operatively coupled to the frame buffer and adapted to couple to an active display device, is configured to receive the image frames to be displayed from the frame buffer and dynamically refreshing the active display device when the change is determined or when a refresh time is expired.
Abstract:
A simplified peritoneal equilibration test (S-PET) is disclosed. Instead of a lengthy peritoneal equilibration test (PET), the simplified procedure requires no blood sample and may use data from as few as two or three samples to classify a peritoneal membrane of a user. Typically, a peritoneal membrane or peritoneum of a dialysis patient, or other person, is classed as a high transport membrane, high-average transport membrane, a low-average transport membrane or a low transporter membrane. The S-PET may be performed at home by a user without the need to submit a blood sample. Kits for analyzing the samples may be furnished for home use. The kits may use disposable strips, microfluidic analyzers or chemical reagents, or may alternatively include reusable analysis equipment, such as optical or conductivity analysis equipment.
Abstract:
A pixel structure is disclosed. The pixel structure is suitable to be disposed on a substrate and includes a first pixel electrode, a second pixel electrode and a top gate TFT. The first pixel electrode and the second pixel electrode are disposed over the substrate, wherein the first pixel electrode and the second pixel electrode are separated from each other. The top gate TFT is disposed between the substrate and the first pixel electrode and includes a patterned semiconductor layer and a gate.