摘要:
Exemplary embodiments of the present disclosure are directed to correcting lung density variations in positron emission tomography (PET) images of a subject using a magnetic resonance (MR) image. A pulmonary vasculature and an outer extent of a lung cavity can be identified in a MR image corresponding to a thoracic region of the subject in response to an intensity associated with pixels in the MR image. The pixels within the outer extent of the lung cavity are classified as corresponding to the pulmonary vasculature or the lung tissue. Exemplary embodiments of the present disclosure can apply attenuation coefficients to a reconstruction of the PET image based on the classification of the pixels within the outer extent of the lung cavity.
摘要:
An imaging system is presented. The imaging system includes a cradle, and a first sheet of coils disposed inside of the cradle such that a first end of the first sheet of coils protrudes out of the cradle and a second end of the first sheet of coils is coupled to a structure, wherein a requisite expanse of the first sheet of coils is flexibly pulled out from the cradle by pulling the first end.
摘要:
A signal processing method is presented. The method includes acquiring undersampled data corresponding to an object, initializing a first image solution and a second image solution, determining a linear combination solution based upon the first image solution and the second image solution, generating a plurality of selected coefficients by iteratively updating the first image solution, the second image solution and the linear combination solution and adaptively thresholding one or more transform coefficients utilizing the undersampled data, an updated first image solution, an updated second image solution and an updated linear combination solution, and reconstructing a data signal using the plurality of selected coefficients.
摘要:
An apparatus, system and method to determine a coordinate system of a heart includes an imager and a computer. The computer is programmed to acquire a first set of initialization imaging data from an anatomical region of a free-breathing subject. A portion of the first set of initialization imaging data includes organ data, which includes cardiac data. The computer is further programmed to determine a location of a central region of a left ventricle of a heart, where the location is based on the organ data and a priori information. The computer is also programmed to determine a short axis of the left ventricle based on the determined location, acquire a first set of post-initialization imaging data from the free-breathing subject from an imaging plane orientation based on the determination of the short axis, and reconstruct at least one image from the first set of post-initialization imaging data.
摘要:
A signal processing method is presented. The method includes acquiring undersampled data corresponding to an object, initializing a first image solution and a second image solution, determining a linear combination solution based upon the first image solution and the second image solution, generating a plurality of selected coefficients by iteratively updating the first image solution, the second image solution and the linear combination solution and adaptively thresholding one or more transform coefficients utilizing the undersampled data, an updated first image solution, an updated second image solution and an updated linear combination solution, and reconstructing a data signal using the plurality of selected coefficients.
摘要:
An imaging system including an imaging apparatus having a plurality of coils, wherein an imaging target is at least partially disposed proximate the coils with at least one excitation source providing pulse sequences. A switch switchably connects the pulse sequences from the excitation source to the coils and switchably connecting to spatially encoded images from the coils during data acquisition. There is an amplified radiation damping feedback section providing amplified radiation damping feedback to the imaging target, wherein the amplified radiation damping feedback provides recovery of longitudinal magnetization subsequent to the data acquisition, and a receiver section for processing the spatially encoded images.
摘要:
A signal processing method is provided. The signal processing method includes the steps of generating undersampled data corresponding to an object, determining a variable thresholding parameter based on a composition of the undersampled data, and iteratively determining thresholded coefficients to generate a plurality of coefficients by utilizing the undersampled data, a current solution and the variable thresholding parameter by updating the variable thresholding parameter and the current solution, and reconstructing a data signal using the plurality of coefficients.
摘要:
A system and method for accelerated MR imaging includes a magnetic resonance imaging (MRI) system having a plurality of gradient coils positioned about a bore of a magnet, and an RF transceiver system and an RF switch controlled by a pulse module to transmit RF signals to an RF coil assembly comprising at least one RF transmit coil and comprising multiple coils to acquire MR images. The MRI apparatus also has a computer programmed to excite multiple pencil regions by use of an under-sampled echo-planar excitation trajectory and acquire MR signals simultaneously on multiple channels of the RF coil assembly. The computer is also programmed to separate contributions from the various multiple pencil regions by use of parallel imaging reconstruction.
摘要:
A magnetic resonance imaging (MRI) system and method is provided. The MRI system comprises a plurality of transmit coils arranged spatially distinct from each other and configured for inducing a nuclear magnetic resonance (NMR) excitation. The NMR excitation is selective both in spatial dimensions and in a chemical shift spectrum. The plurality of transmit coils are driven by a plurality of radio frequency (RF) pulses, and a gradient module is driven by a plurality of gradient pulses.
摘要:
A cryogenically cooled radiofrequency (RF) coil structure for use in Magnetic Resonance Imaging (MRI) and method for cryogenically cooling RF coils are provided. The cryogenically cooled RF coil structure comprises a sealed structure constructed of non-conducting material and adapted for containing a cooling substance and at least one RF coil disposed integrally in contact with the sealed structure such that sealed structure and integrally disposed RF coil are disposed about an object to be imaged.