Abstract:
In a process for carrying out a reaction, a liquid reaction mixture is contacted with a catalyst that includes silica and/or a silicate, in which process a silicon compound that is soluble in the liquid reaction mixture is added to the reaction mixture before being contacted with the catalyst. The aqueous reaction mixture suitably contains water, an alcohol or a mixture thereof.
Abstract:
A substituted benzene derivative is prepared in a process, which includes reacting a furan derivative of formula (I): wherein R is an alkyl group, with an olefin of formula (II): R1—CH═CH—R2 (II) wherein R1 and R2 are the same or different and independently are selected from the group consisting of hydrogen, —CN, —CHO and —COOR3, wherein R3 is selected from hydrogen or an alkyl group, or R1 and R2 together form a —C(O)—O—(O)C— group, with the proviso that R1 and R2 are not both hydrogen, to produce a bicyclic ether; and dehydrating the bicyclic ether to obtain a benzene derivative. The benzene derivative thus obtained can suitably be converted to a benzene carboxylic acid compound by oxidation.
Abstract:
A process includes the following steps: a) converting a solid material containing hemicellulose, cellulose and lignin, by: (i) hydrolyzing at least part of the hemicellulose of the solid material with a first aqueous hydrochloric acid solution, yielding a remaining solid material and a hydrochloric acid-containing, aqueous, first hydrolysate product solution; (ii) hydrolyzing at least part of the cellulose of the remaining solid material with a second aqueous hydrochloric acid solution, yielding a residue and a hydrochloric acid-containing, aqueous, second hydrolysate product solution; (b) forwarding to step (c) a, hydrochloric acid-containing, aqueous intermediate product solution comprising: a part of or the whole of the hydrochloric acid-containing, aqueous first and/or second hydrolysate product solution of step (a); and (c) heating at least part of the hydrochloric acid-containing, aqueous intermediate product solution to yield a product solution containing 5-(chloromethyl)furfural, and extracting the 5-(chloromethyl)furfural from the product solution into an extraction solvent.
Abstract:
A process for producing a carboxylic acid composition including 2,5-furandicarboxylic acid, including the steps: a) oxidizing an oxidizable compound including 5-alkoxymethylfurfural in an oxidation reactor in the presence of a saturated organic acid solvent having from 2 to 6 carbon atoms and a catalyst system comprising cobalt, manganese and bromine using an oxidizing gas at a temperature in the range of 160 to 210° C. to obtain a crude carboxylic acid composition including mono alkyl ester of 2,5-furandicarboxylic acid and solid 2,5-furandicarboxylic acid, b) isolating at least a portion of the solid 2,5-furandicarboxylic acid from the crude carboxylic acid composition in a solid-liquid separation zone to generate a solid cake and a mother liquor, c) determining the amount of manganese and/or cobalt in the cake, and d) increasing the amount of one or more controlling acids in the oxidation reactor.
Abstract:
A preform for multilayer container having a polyethylene furanoate layer includes an outer layer defining an exterior surface and including poly(ethylene terephthalate) and an inner barrier layer including semi-crystalline poly(ethylene furanoate) where the semi-crystalline poly(ethylene furanoate) of the inner barrier layer has a crystallinity in the range of 3 to 10%.
Abstract:
A solid-state polymerized poly(tetramethylene-2,5-furandicarboxylate) polymer is produced in a process including: providing a poly (tetramethylene-2,5-furandicarboxylate) polycondensate having a number average molecular weight (Mn) of at least 10,000, as determined by Gel Permeation Chromatography (GPC) using polystyrene as standard, and having a content of carboxylic acid end groups of at most 50 meq/kg; and keeping the poly(tetramethylene-2,5-furandicarboxylate) polycondensate at a temperature in the range of 80 to 140° C. to obtain a semi-crystalline polycondensate; and subjecting the semi-crystalline polycondensate to solid-state polymerization by keeping the semi-crystalline polycondensate at a temperature of at least 140° C. and below its melting point, whilst the semi-crystalline polycondensate is either under a flow of inert gas or under vacuum to obtain the solid-state polymerized poly(tetramethylene-2,5-furandicarboxylate) polymer.
Abstract:
A container, preferably a bottle, is fabricated in a method comprising: —providing a preform comprising poly(ethylene 2, 5-furandicarboxylate); —stretch blow-molding the preform to form the container, wherein the stretch blow-molding comprises a stretching step of the preform to a ratio higher than the natural draw ratio of poly(ethylene 2, 5-furandicarboxylate) at a temperature in a range of 105° C. to 145° C., preferably in a range of 110° C. to 140° C., and at an equivalent axial strain rate at a reference temperature of 100° C. in the range of 0.001 to 10 s−1, preferably in a range of 0.03 to 3 s−1.
Abstract:
It is provided that a polyester film excellent in heat resistant dimension stability, impact-resistant strength properties, easy-slipping properties, mechanical properties, transparency, and gas barrier performance, and a film roll obtained by winding up this polyester film. A polyester film includes at least one layer mainly including a polyester resin containing a dicarboxylic acid component including furandicarboxylic acid as a main component and a glycol component including ethylene glycol as a main component; and the polyester film has a plane orientation coefficient ΔP of not less than 0.005 and not more than 0.200, a thickness of not less than 1 μm and not more than 300 μm, a heat shrinkage rate of 3.2% or less in each of the MD direction and the TD direction at 150° C. for 30 minutes, and a layer containing at least one additive.
Abstract:
A solid-state polymerized poly(tetramethylene-2,5-furandicarboxylate) polymer is produced in a process including: providing a poly (tetramethylene-2,5-furandicarboxylate) polycondensate having a number average molecular weight (Mn) of at least 10,000, as determined by Gel Permeation Chromatography (GPC) using polystyrene as standard, and having a content of carboxylic acid end groups of at most 50 meq/kg; and keeping the poly(tetramethylene-2,5-furandicarboxylate) polycondensate at a temperature in the range of 80 to 140° C. to obtain a semi-crystalline polycondensate; and subjecting the semi-crystalline polycondensate to solid-state polymerization by keeping the semi-crystalline polycondensate at a temperature of at least 140° C. and below its melting point, whilst the semi-crystalline polycondensate is either under a flow of inert gas or under vacuum to obtain the solid-state polymerized poly(tetramethylene-2,5-furandicarboxylate) polymer.
Abstract:
The molecular weight of a semi-crystalline starting polyester comprising ethylene 2,5-furandicarboxylate units is enhanced by heating the semi-crystalline starting polyester, having a melting point Tm, at a temperature in the range of (Tm-40° C.) to Tm to obtain a solid stated polyester, where the semi-crystalline starting polyester has an intrinsic viscosity of at least 0.45 dL/g, and an amount of carboxylic acid end groups in the range of 15 to 122 meq/kg.