Abstract:
A three-dimensional display device includes an image display portion for time-sharing a left eye image and a right eye image, and a parallax barrier for separating the left and right eye images provided from the image display portion into a direction of a left eye and a right eye of a user, respectively, by using a first and a second electrode set.A method includes applying a first driving voltage to the first electrode set during a first period, and applying a second driving voltage to the second electrode set during a second period. The second driving voltage has a level different from that of the first driving voltage.
Abstract:
Disclosed are a base station, a relay station, and a terminal according to a method for designing a cellular system for improving resource usage efficiency by reducing interference between relay stations and interference between the base station and the relay station. The relay station gets control signals that terminals served by the base station transmit, and registers terminals, levels of the control signals of which are bigger than a predetermined value, to a list of the interference terminals. The relay station checks an interference resource through resource allocation information of the base station, checks an available resource corresponding to a resource except the interference resource among a resource allocated by the base station, and allocates some of the available resource to the terminal.
Abstract:
Provided is a method of controlling a multiple input multiple output (MIMO) system. One embodiment of the method includes the steps of: estimating, at a receiver, a MIMO channel and detecting data streams using a successive interference cancellation scheme; calculating, at the receiver, S and P using the estimated channel and then feeding back information corresponding to (P1, P2, . . . , PM-1, SINR5M) to a transmitter, and determining, at the transmitter, a transfer rate and transmission power perstream using the fed-back information. Another embodiment of the method includes the steps of: estimating, at a receiver, a MIMO channel and detecting data streams using a signal received from an antenna; extracting, at the receiver, a feedback parameter to be fed back to the transmitter using the estimated channel, and feeding back the feedback parameter to the transmitter, and determining, at the transmitter, a stream to be allocated to the receiver from among the streams of the transmitter using the fed-back parameter and a data transfer rate per stream, wherein the feedback parameter is information corresponding to a successive interference cancellation order and a signal-to-interference-plus-noise ratio (SINR) per stream reflecting successive interference cancellation.
Abstract:
A display device and a method of driving the display device are provided. The display device includes a scan driver for transmitting scan signals to a plurality of scan lines, a data driver for transmitting data signals to a plurality of data lines, and a signal controller for controlling the transmissions of the scan driver and the data driver. The scan driver and the data driver are configured to begin operating in response to a reset signal. The signal controller is configured to detect the reset signal, to determine whether the detected reset signal is a normal reset signal or an abnormal reset signal applied after an on time at which power is supplied to the scan driver and the data driver, and to apply a normal reset signal when the detected reset signal is determined to be an abnormal reset signal.
Abstract:
A three-dimensional display device includes an image display portion displaying left and right eye images, and a parallax barrier directing the left and right eye images respectively towards left and right eyes of a user.The parallax barrier includes first electrodes located on a first substrate, a first connection electrode electrically connecting the first electrodes, a first terminal electrode connected to an end of the first connection electrode, a first connection terminal connected to the first terminal electrode, second electrodes located between the first electrodes, a second connection electrode electrically connecting the second electrodes, a second connection terminal connected to an end of the second connection electrode, a common electrode located on a second substrate facing the first substrate, and a liquid crystal layer disposed between the first and second substrates.The first terminal electrode has a lower electric resistance than the first electrodes and the second electrodes.
Abstract:
Methods of preparing capped metal nanocrystals are provided. One method includes reacting a metal nanocrystal precursor with a reducing agent in a solution having a platinum catalyst.
Abstract:
A beam switching antenna system and method and apparatus for controlling the same is provided, by which optimal antenna characteristics can be maintained according to a peripheral environment, the necessary time and power consumption of searching an optimal beam-direction can be reduced, and electromagnetic waves of a beam generated from an antenna can be minimized. The beam switching antenna system includes an antenna element for transmitting and receiving a beam; a dielectric body surrounding said antenna element; at least one conductive reflector facing a lateral outside of said dielectric body; and a ground switch circuit connected to said at least one conductive reflector. The ground switch circuit includes a reference voltage source generating a reference voltage; a ground line connected to the reference voltage source; an electrical switching device connected between the ground line and the conductive reflector; and a controller for controlling the electrical switching device. The conductive reflector includes an upper conductive reflector having one end connected to one terminal of the electrical switching device; and a lower conductive reflector having one end connected to another terminal of the electrical switching device and the other end connected to the ground line.
Abstract:
In a method of manufacturing a semiconductor device having a stacked structure, an amorphous silicon layer may be formed on a first single crystalline silicon layer. An amorphous state of the amorphous silicon layer may be converted into a single crystalline state to form a preliminary second single crystalline silicon layer having protrusions. The protrusions may be polished to form a second single crystalline silicon layer.
Abstract:
An automatic belt tension apparatus of an image forming device having: a tension actuating part connected to the driving unit and operating by a driving force of a driving unit; a tension applying part to selectively apply a predetermined tension to a belt, installed with respect to the belt; and a tension releasing part to operate the tension applying part to not apply the predetermined tension to the belt, installed with respect to the tension applying part.
Abstract:
An antenna assembly for wireless communications has various components to minimize signal influence when transmitting signals to minimize undesirable loop formation phenomena caused by (positive) feedback of signals. Signal wave scattering and diffraction causing back lobe radio frequency (RF) patterns are minimized by a particular antenna assembly structure having a reflector and at least one attenuating structural member, a metallic mesh wrapping the power cable of a feeder, a non-conductive antenna support structure, or any combination thereof. The dimensions of the various components, in particular the reflector and attenuators, can be varied according to desired wireless communications environment.