Abstract:
The present invention relates to transmit power allocation in multi-carrier, multiplexing MIMO communication systems. The present invention especially relates to a MIMO communication device, a method of assigning transmit power to two or more communication channels and a software program product. A multiple-input-multiple-output, MIMO, communication device according to the present invention comprises a link controller adapted to assign transmit power to two or more transmission channels, each of said transmission channels having preassigned a portion of transmit power for each of a group of subcarriers, said link controller being further adapted to assign, for each subcarrier of said group of subcarriers, at least part of the preassigned transmit power portion of a transmission channel that is not used for transmitting information at the subcarrier, to one or more transmission channels that are used for transmitting information at the subcarrier.
Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame comprising at least two preamble patterns adjacent to each other in the frequency direction and at least two data patterns, said transmitting apparatus comprising a pilot mapper configured to map the same sequence of pilot signals on frequency carriers of each of said at least two preamble patterns in a frame, each preamble pattern having the same length, a data mapper configured to map data on frequency carriers of said at least two data patterns in a frame a transformer configured to transform said preamble patterns and said data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and a transmitter configured transmit said transmission signal.
Abstract:
A method of transmitting data symbols via an Orthogonal Frequency Division Multiplexed (OFDM) symbols that includes forming data symbols into pairs and generating a first pair of modulation symbols for each of the pairs of data symbols, where the first pair of modulation symbols form first and second modulation symbols of an Alamouti cell. The method further includes forming a first version of the OFDM symbols by modulating the sub-carriers allocated for carrying the data with the first and second modulation symbols of the Alamouti cells, and modulating the one or more pilot carriers of the first version of the OFDM symbol according to a predetermined pattern.
Abstract:
A method for receiving signals over a power line network, within the power line network at least one transmitter and at least one receiver communicate via at least two channels, each of the channels having a respective feeding port of the at least one transmitter and a respective receiving port of the at least one receiver, and the receiver having at least two receiving ports. The method determines a channel characteristic of each of the channels, applies a receiving port selection criterion based on the channel characteristic, and selects an excluded receiving port among the at least two receiving ports based on the receiving port selection criterion, the excluded receiving port is not used during further communication.
Abstract:
A power line communication method for realizing data communication between at least one first or sending power line communication partner device and at least one second or receiving power line communication partner device. The method checks transmission conditions of a plurality of possible communication channels, thereby generating transmission condition data descriptive for the communication conditions of the respective possible communication channels. Additionally, communication conditions of the plurality of possible communication channels are selected as actual communication conditions based on the transmission condition data.
Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame including at least two signalling patterns adjacent to each other in the frequency direction and at least two data patterns, the transmitting apparatus including signalling mapping means to map signalling data on frequency carriers of each of the at least two signalling patterns in a frame, each signalling pattern having the same length, data mapping means to map data on frequency carriers of the at least two data patterns in a frame, transforming means to transform the signalling patterns and the data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and transmitting means to transmit the transmission signal. A corresponding transmitting method and a frame pattern for a multi carrier system are also provided.
Abstract:
The present invention relates to OFDM generation apparatus and methods for generating OFDM transmission signals from OFDM symbols, each comprising a plurality of OFDM subcarriers, for transmission in a multi-carrier data transmission system. An embodiment of the proposed apparatus and method are adapted for using a selected mixing frequency for mixing said complex time-domain samples of said OFDM symbol from a baseband frequency up to a passband frequency by use of a mixing frequency to obtain said OFDM transmission signal, wherein the mixing frequency is selected such that common phase rotations of the OFDM subcarriers of said OFDM symbol with respect to adjacent OFDM symbols of said OFDM transmission signal are avoided or compensated after said mixing. Further embodiments for avoidance or compensation of such common phase rotations are provided.
Abstract:
A power line communication method for realizing data communication between at least one first or sending power line communication partner device and at least one second or receiving power line communication partner device. The method checks transmission conditions of a plurality of possible communication channels, thereby generating transmission condition data descriptive for the communication conditions of the respective possible communication channels. Additionally, communication conditions of the plurality of possible communication channels are selected as actual communication conditions based on the transmission condition data.
Abstract:
The present invention relates to a transmitting apparatus (54) for transmitting signals in a multi carrier system on the basis of a frame structure, each frame comprising at least two training patterns adjacent to each other in the frequency direction and at least two data patterns, said transmitting apparatus comprisingpilot mapping means (55) adapted to map the same sequence of pilot signals on frequency carriers of each of said at least two training patterns in a frame, each training pattern having the same length, data mapping means (58, 58′, 58″) adapted to map data on frequency carriers of said at least two data patterns in a frame, transforming means (60) adapted to transform said training patterns and said data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and transmitting means (61) adapted to transmit said transmission signal.The present invention further relates to a corresponding transmitting method and a frame pattern for a multi carrier system.
Abstract:
The present invention refers to a method for defining useable frequency bands for a powerline communication (PLC) system (101) using power supply lines of a power supply network (104a) for interconnecting a number of PLC nodes (302, 306) such that electromagnetic emissions generated by PLC signals (s(t)) transmitted via said power supply lines do not interfere with broadcast RF signals radiated in the same frequency bands. Before starting own communication activities, PLC nodes (302, 306) participating in a PLC session scan (S1a) the entire frequency range designated for powerline communication to detect (S1b) frequency bands which are occupied by broadcast services. During powerline communication the occurrence of broadcast signals is regularly checked (S2) by screening (S2a) the entire frequency range designated for powerline communication and detecting (S2b) relevant broadcast bands that should be omitted during powerline communication to avoid interference noise (n(t)). After that, new frequency bands for powerline communication are allocated (S3) within said frequency range, provided that these new bands are not occupied by any detected wireless service.