摘要:
Provided is a low voltage frequency synthesizer using a boosting method for a power supply voltage of a charge pump. The low voltage frequency synthesizer includes a phase/frequency detector (PFD) that receives and compares a reference frequency and a feedback frequency to output a comparison signal, a charge pump that receives the comparison signal to output a current corresponding to the comparison signal, a low-pass filter (LPF) that generates a voltage corresponding to the output current of the charge pump, a voltage controlled oscillator (VCO) that receives the voltage of the LPF, amplifies the voltage to generate a boosting voltage, and outputs a frequency corresponding to the received voltage, and a DC converter that receives the boosting voltage of the VCO, converts the boosting voltage into a DC voltage, and applies the DC voltage as a power supply voltage of the charge pump. Since the supply voltage of the charge pump is provided from the LC-circuit-based VCO, the frequency synthesizer has superior characteristics such as a wide locking range, low phase noise, and the prevention of performance degradation caused by an external environment or process variations.
摘要:
A transimpedance amplifier for a burst mode optical communication converts a burst current signal into differential output voltage signals. Using a multi-level digital AGC mechanism, the transimpedance amplifier is rapidly adapted to a burst signal whose amplitude varies in a wide range. By using an adaptive level detection method, a multi-level digital AGC can be implemented without using ADC. In addition, because the transimpedance amplifier uses a selective reset generation scheme that performs a reset operation for itself after a high power burst, a burst mode operation can be performed without external reset signals. Accordingly, the transimpedance amplifier can be integrated with an optical detector within a TO-can. Furthermore, the transimpedance amplifier can have the burst mode capability and the best sensitivity.
摘要:
An apparatus and method for converting a frequency of a high frequency signal received from an antenna in an ultra wide band communication system transmitting and receiving using at least two reference frequencies. The method includes generating generation frequencies having frequencies set to convert the frequency of the high frequency signal and mixing the frequency of the high frequency signal and the generation frequencies in at least two stages.
摘要:
There is provided a variable gain amplifier that is implemented with a CMOS device and has wide band variation and wide bandwidth by a predetermined exponential function. A variable gain amplifier having wide gain variation and wide bandwidth according to an aspect of the invention may include: a differential amplification section differentially amplifying an input signal according to a gain adjustment signal; and a gain adjustment section supplying the gain adjustment signal on the basis of an approximated exponential function determined according to a predetermined bias current, and adjusting a gain of the differential amplification section.
摘要:
Provided is a burst mode optical receiver considering a characteristic of an extinction ratio of a received optical signal is provided. By using a peak detector considering a characteristic of an extinction ratio, top and bottom peak voltages of actual burst packets can be precisely detected while not being affected by a DC offset corresponding to an extinction ratio even though burst packets having a DC offset corresponding to the extinction ratio are received. Accordingly, waveform distortion of a signal output from the burst mode optical receiver can be minimized.
摘要:
A local oscillator without a frequency divider is provided. The local oscillator includes a quadrature voltage controlled oscillator generating I and Q signals having a frequency which is one-third of a local oscillation frequency, and a differential second-harmonic signal having a frequency which is two-thirds of the local oscillation frequency, a poly-phase filter converting the differential second-harmonic signal input from the quadrature voltage controlled oscillator into I and Q signals, and a single side band (SSB) mixer receiving the I and Q signals having the frequency which is one-third of the local oscillation frequency from the quadrature voltage controlled oscillator as an input and receiving the I and Q signals having the frequency which is two-thirds of the local oscillation frequency from the poly-phase filter as an input, and outputting the I and Q signals having the local oscillation frequency.
摘要:
A low noise amplifier (LNA) for ultra wide band recives and amplifies identical RF signals in different frequency bands, and includes more than one pair of narrow band LNAs coupled in parallel, and a load circuit which increases load impedance of the entire circuit of the narrow band LNAs. The LNA can not only amplify the RF signal in the UWB but also obtain the low noise and the high gain that are features of the conventional narrow band LNA.
摘要:
An automatically gain controllable linear differential amplifier using a variable degeneration resistor is disclosed. The linear differential amplifier includes an input end, a bias current source, a load unit, a first MOS transistor and a second MOS transistor. The linear differential amplifiers of the present invention can control an amplifying gain according to an input signal and improve linearity IIP3 without needing additional power consumption caused by improving the linearity. The automatically gain controllable linear differential amplifier uses NMOS/PMOS transistor so an integration process of the amplifier can be implemented more conveniently and efficiently.
摘要:
A balun circuit capable of operating at low voltages comprises a set of a load resistor, a first and a second transistors connected in series in that order between a supply voltage source and the ground and another set of a load resistor, a third and a fourth transistors connected in series in that order between the supply voltage source and the ground. The emitters of the first and the third transistors are connected to the collectors of the second and the fourth transistors, respectively. The balun circuit further comprises a bias voltage source connected to the bases of the first and the third transistors; a bias current source connected to the bases of the second and the fourth transistors; a first capacitor; an input voltage source coupled to the collector of the second transistor via the first capacitor; and a second capacitor coupled between the base and the collector of the second transistor.