摘要:
The invention discloses an innovative process to produce highly antibacterial nano-composite fabric textile containing silver metal compound. The process mainly uses high-energy D-ray radiation to modify silver type of bactericides and graft or crosslink them onto Nylon or PET fiber surface to produce excellent antibacterial textile products. The mechanism uses silver nano-compound as performance additive and through Co-60 irradiation technique reduces and firmly fastens silver particles onto Nylon or PET (Polyethylene Terephthalate) fiber material. Because the inorganic silver type bactericides actively interact with enzymes in bacteria or destroy cell walls to achieve good bactericidal effect, the radiation process does not need initiators or other additives. So the process is simple and effective. The test results prove excellent bactericidal power and potential value in household or medical textile products.
摘要:
The present invention relates to a combination set of meta-iodobenzyl guanidine (MIBG) freezing crystal and making method thereof and method of radioactive marker for making. The combination set of freezing crystal includes a first container having freezing crystal and a second container having sodium acetate buffer solution. The method for making a combination set of freezing crystal includes the steps of mixing (meta-iodobenzyl guanidine)2·sulfuric acid and ammonium sulfate into first non-pyrogenic injection water; getting a first container having freezing crystal after freezing and drying; and getting a second container having the sodium acetate buffer solution after sterilizing. The method of radioactive marker for making includes the steps of adding radioactive iodine ion into freezing crystal to react and adding sodium acetate buffer solution to get radioactive MIBG solution. The present invention adjusts agent easily and is instant to use so the radioactive iodine marker don't lose activity easily before using it.
摘要:
A device for concentrating 99mTc pertechnetate and a method thereof are disclosed. The device includes a concentration device, a control device and a central processing unit. The concentration device is for concentrating 99mTc pertechnetate, the control device connects with each members of the concentration device, and the central processing unit is used for saving an automatic control program. The automatic control program is run by the central processing unit so as to detect and monitor weight as well as activity of the concentrated 99mTc pertechnetate. Due to the automatical control, the concentration quality and production efficiency of the 99mTc pertechnetate are improved. Moreover, the radiation dose received by users is reduced.
摘要:
This is a new precursor and new method for the synthesis of no-carrier-added O-(2-[18F]fluoroethyl)-L-Tyrosine which has been proved a suitable PET (position emission tomography) probe for tumor diagnosis imaging, the preparation of the title compound starts from precursors with the chemical structures as in Formula 1, wherein R1 is a protective group for the carboxyl functional group, R2 is a protective group for the amino group, and R3 acts as a leaving group. R1 represents an arylalkyl group, R2 represents a carboxyl group, and R3 represents a p-tosyloxy, methane sulfonyloxy or trifluoromethane sulfonyloxy or bromine, the invention includes a method for the syntheses of new precursors with the chemical structures as in Formula 1.
摘要:
This is a novel method for production of no-carrier-added O-(2-[18F]fluoroethyl)-L-Tyrosine, which has been proved a suitable PET (position emission tomography) probe for tumor diagnosis imaging, and the preparation of the title compound starts from precursors with the chemical structures as in Formula 1, wherein R1 is a protective group for the carboxyl functional group, R2 is a protective group for the amino group, and R3 acts as a leaving group, R1 represents an arylalkyl group, R2 represents a carboxyl group, and R3 represents a p-tosyloxy, methane sulfonyloxy or trifluoromethane sulfonyloxy or bromine, and the final purification of the product is using a separation column, which is very convenient for automated synthesis, and the invention uses the precursor with the chemical structures as in Formula 1.