Swing analysis system that calculates a rotational profile

    公开(公告)号:US11577142B2

    公开(公告)日:2023-02-14

    申请号:US17359407

    申请日:2021-06-25

    Abstract: A system that measures a swing of equipment (such as a bat or golf club) with inertial sensors, and analyzes sensor data to create a rotational profile. Swing analysis may use a two-lever model, with a body lever from the center of rotation to the hands, and an equipment lever from the hands to the sweet spot of the equipment. The rotational profile may include graphs of rates of change of the angle of the body lever and of the relative angle between the body lever and the equipment lever, and a graph of the centripetal acceleration of the equipment. These three graphs may provide insight into players' relative performance. The timing and sequencing of swing stages may be analyzed by partitioning the swing into four phases: load, accelerate, peak, and transfer. Swing metrics may be calculated from the centripetal acceleration curve and the equipment/body rotation rate curves.

    Swing analysis method using a sweet spot trajectory

    公开(公告)号:US10716989B2

    公开(公告)日:2020-07-21

    申请号:US16189889

    申请日:2018-11-13

    Abstract: A method for analyzing sensor data from baseball swings (or swings in similar sports) that transforms data into a reference frame defined by the bat orientation and velocity at impact. The trajectory of the sweet spot of the bat is tracked through the swing, and is analyzed to generate metrics describing the swing. A two-lever model of the swing may be used to model the effects of body rotation and wrist rotation. Data may be analyzed to identify relevant events during the swing such as start of downswing, commit (wrist release), on-plane, peak bat speed, and impact. Illustrative swing metrics derived from the sweet spot trajectory, the swing plane reference frame, and the two-lever model include: forward bat speed, on-plane rotation, hinge angle at commit, hinge angle at impact, body rotation ratio, body tilt angle, and swing plane tilt angle.

    Intelligent motion capture element
    57.
    发明授权

    公开(公告)号:US10607068B2

    公开(公告)日:2020-03-31

    申请号:US15866382

    申请日:2018-01-09

    Abstract: Intelligent motion capture element that includes sensor personalities that optimize the sensor for specific movements and/or pieces of equipment and/or clothing and may be retrofitted onto existing equipment or interchanged therebetween and automatically detected for example to switch personalities. May be used for low power applications and accurate data capture for use in healthcare compliance, sporting, gaming, military, virtual reality, industrial, retail loss tracking, security, baby and elderly monitoring and other applications for example obtained from a motion capture element and relayed to a database via a mobile phone. System obtains data from motion capture elements, analyzes data and stores data in database for use in these applications and/or data mining. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Enables performance related equipment fitting and purchase. Includes active and passive identifier capabilities.

    Aiming feedback system with inertial sensors

    公开(公告)号:US10265602B2

    公开(公告)日:2019-04-23

    申请号:US15060217

    申请日:2016-03-03

    Abstract: An aiming system that provides feedback on how closely the aim of an object is aligned with a direction to a target. An inertial sensor on the object provides data on the object's position and orientation; this data is combined with target direction information to determine how to correct the aim. An illustrative application is a golf club aiming system that measures whether the clubface normal is aligned horizontally with the direction to the hole. The system sends feedback signals to the user to help the user adjust the aim. These signals may include for example audible tones or haptic vibrations that vary in frequency and amplitude to instruct the user to adjust the aim. For example, haptic signals may be sent to a smart watch worn by the user; the user may therefore obtain aiming feedback without having to look at a screen.

Patent Agency Ranking