Abstract:
A housing for a display device is disclosed. The housing includes a back plate configured to be deformable to change its curvature; and at least one curvature retaining unit located on a first side of the back plate that is convex when the back plate is bent. Each curvature retaining unit includes a plurality of supporting members arranged in a row, a first side of each of the supporting members is pivotably mounted to the back plate, and each curvature retaining unit has a non-supporting state and a supporting state. In the non-supporting state of the curvature retaining unit, the back plate is in a flat state; and in the supporting state of the curvature retaining unit, two opposite sides of adjacent supporting members abut against each other such that the back plate is in a bent shape. Moreover, a display device having the housing is disclosed.
Abstract:
The present disclosure relates to the field of display technology, and provides a packaging substrate, a display panel and a curved-surface display panel. The packaging substrate includes a base which has a plurality of splice blocks, and the adjacent splice blocks are concatenated to each other by an adhesive material.
Abstract:
The present application discloses a substrate comprising a via and a lyophobic protrusion layer comprising a plurality of protrusions spaced apart in the via, each of the plurality of protrusions protruding from a bottom surface of the via.
Abstract:
The present invention discloses organic light emitting device, manufacturing method thereof, organic light emitting display device and driving method thereof. The organic light emitting device comprises a substrate and a first electrode layer, an organic layer and a second electrode layer positioned on the substrate, the organic layer is arranged between the first and second electrode layers, the first electrode layer, the organic layer and the second electrode layer form a laminated region for emitting light in a first specific color in a positive half cycle of alternating current and an inverted region for emitting light in a second specific color in a negative half cycle of alternating current, and at least portions of projections of the laminated region and the inverted region on the substrate are not overlapped. Technical solutions of the present invention render the organic light emitting device with adjustable light color and prolonged service life.
Abstract:
The present disclosure provides an organic electroluminescent display substrate and a manufacturing method thereof, and a display device. The organic electroluminescent display substrate includes a base substrate and a plurality of pixel units formed on the base substrate, the pixel unit including a light-emitting region and a non-light-emitting region. An organic electroluminescent structure is formed in the light-emitting region, the organic electroluminescent structure including a first electrode layer, an organic luminescent functional layer and a second electrode layer stacked on the base substrate, the second electrode layer including a first portion in the light-emitting region and a second portion in the non-light-emitting region, and a plurality of organic/inorganic material layers are provided between the second electrode layer and the base substrate, the plurality of organic/inorganic material layers including at least the organic luminescent functional layer in the light-emitting region and including a transparent material layer in the non-light-emitting regions of parts of pixel units.
Abstract:
An organic light emitting diode display substrate includes a light emitting unit layer, a first band gap layer and a color conversion layer. The first band gap layer and the color conversion layer are on a light exit path of the light emitting unit layer. The light emitting unit layer includes first, second and third light emitting units periodically arranged on a driving substrate and emitting light of a first color. The color conversion layer converts a part of the light of the first color into light of a second color and a third color. The first band gap layer is between the light emitting unit layer and the color conversion layer. The first band gap layer transmits the light of the first color in a light exit direction, and reflects the light of the second color and the light of the third color.
Abstract:
The present application provides a shift register and a method of driving the same, and a gate driving circuit. In the shift register, an input sub-circuit is configured to output an input signal to a pull-up node under control of a first clock signal of a first clock signal terminal, an output sub-circuit is configured to output a second clock signal of a second clock signal terminal to the output terminal under control of a voltage level of the pull-up node, a reset sub-circuit is configured to reset voltage levels of the pull-up node and the output terminal under control of a voltage level of a pull-down node, and a reset control sub-circuit is configured to control the voltage level of the pull-down node such that the voltage levels of the pull-up node and the output terminal are reset to a level signal.
Abstract:
The present disclosure relates to the field of display technologies, and in particular, to an OLED display panel, a method of fabricating the same, and a display apparatus. The OLED display panel includes; a base substrate, a plurality of first electrodes located on the base substrate. The OLED display panel include a pixel defining frame, located on the base substrate and separating a plurality of the first electrodes. The pixel defining frame is configured to define a plurality of sub-pixel regions. The OLED display panel includes an organic functional layer located on each of the sub-pixel regions and the pixel defining frame. The organic functional layer has a hollow structure at a position corresponding to the pixel defining frame, and the hollow structure forms an insulation between two adjacent sub-pixel regions in the organic functional later. The OLED display panel includes a second electrode, located on the organic functional layer.
Abstract:
The present disclosure provides an OLED pixel unit, a method for producing the same, a display panel and a display apparatus. The OLED pixel unit includes an organic light emitting diode configured to emit a light within a wavelength range; and a photonic crystal array located at a light exit side of the organic light emitting diode, structural parameters of the photonic crystal array depending on a preset color of the OLED pixel unit. The light emitted from the OLED has a wavelength which is selected by the photonic crystal array such that the preset color is presented at the light exit side of the OLED. It can achieve high resolution over the conventional means due to the photonic crystal array having a machining size in nanometers. Thus, the resolution of the OLED pixel unit using the photonic crystal array can be improved significantly.
Abstract:
A curvature adjustment device of a curved display screen, a curvature adjustment method for a curved display screen and a curved display device. A curvature adjustment device for a curved surface display screen includes: a supporting back plate, which is a supporting plate having a fixed curvature; an elastic back plate, which is connected to the supporting back plate and capable of being elastically deformed to change a curvature; and an adjusting device, configured to adjust the curvature of the elastic back plate. The adjustment device is used to change the curvature of the elastic back plate, such that the display screen can be curved into different arc shapes, improving the applicability of the curvature adjustment device of the curved display screen.