Abstract:
Embodiments of the present invention relate to an array substrate, a manufacturing method thereof and a display device. The manufacturing method of the array substrate comprises: preparing a base substrate; forming a gate electrode pattern on the base substrate; forming a gate insulating layer pattern on the base substrate with the gate electrode pattern formed thereon; and forming an active layer pattern, a pixel electrode pattern and source and drain patterns above the gate insulating layer pattern through a three-gray-tone mask process in one patterning process, wherein the gate electrode pattern, the active layer pattern, the source pattern and the drain pattern constitute a thin film transistor.
Abstract:
The present invention provides a pixel circuit, a driving method thereof and a display device which are related to the field of display technology. The pixel circuit comprises a reset module, a compensation module, an energy storage module, a drive module, a drive control module, a power supply module and a light emitting module, the input voltage of the third power supply signal terminal is larger than the difference between the input voltage of the data signal terminal and the threshold voltage of the drive module, and is less than the input voltage of the second power supply signal terminal. The present invention is capable of discharging the driving transistor to a potential Vth within a short period, ensuring the driving transistor to be discharged completely in a short time.
Abstract:
There are provided a compensation pixel circuit and a display apparatus. The compensation pixel circuit comprises an organic light emitting diode (D1) and a driving transistor (M1), a first terminal of the driving transistor (M1) being connected to an anode of the organic light emitting diode (D1). The compensation pixel circuit further comprises: a resetting module, a data voltage writing module, a light emitting control module and a switching module. The resetting module includes a capacitor (C1) whose first terminal is connected to a gate of the driving transistor (M1) and configured to make the gate of the driving transistor (M1) discharge so that a gate voltage is reduced to a magnitude of a threshold voltage of the organic light emitting diode (D1). The data voltage writing module is configured to discharge at the gate of the driving transistor (M1) so as to connect a data voltage to a second terminal of the driving transistor (M1) after the gate voltage is made reduced to the magnitude of the threshold voltage of the organic light emitting diode (D). The light emitting control module is configured to connect a source of the driving transistor (M1) and a second terminal of the capacitor (C1) to an operating voltage at a high level after data voltage writing is completed. The switching module is configured to disconnect the driving transistor (M1) from the organic light emitting diode (D1) when the data voltage is connected to the second terminal of the driving transistor (M1). The compensation pixel circuit can compensate for the threshold voltage offset, and reduce the influence of signals from frame to frame greatly.
Abstract:
The present invention provides a pixel driving circuit and a driving method thereof, and a display apparatus, which can raise starting point for writing a data, ensure time for writing the data, and avoid distortion of the written data. The pixel driving circuit comprises a reset module, a data write module, an output module and a pre-charging module, wherein during a period after a reset stage and before inputting of a row driving signal, the pre-charging module performs a step of pre-charging.
Abstract:
There is provided a pixel circuit, a driving method thereof and a display apparatus. The pixel circuit comprises a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistors, a sixth transistor, a seventh transistor, a storage capacitor and a light-emitting element, it can solve the problem that a large difference exists between the data output from the Integrated Circuit and the data actually written to the pixel circuit and avoid the effect that the inconsistency or drift of the threshold voltage (Vth) of the third transistor and the IR drop of the initial voltage (V_initial) have on the current flowing through the light-emitting element.
Abstract:
The present application provides a shift register unit as well as a gate drive circuit and a display device using it. The shift register unit comprises an input module, an NAND gate module, an inverter module, a pull-up module and a pull-down module. The input module receives an input signal and a first clock signal, and transfers the input signal to a first input end of the NAND gate module and the pull-down module under the control of the first clock signal. A second input end of the NAND gate module receives a second clock signal input, and an output end thereof connects the inverter module. An output end of the inverter module connects the pull-up module. The pull-up module pulls up the output signal to a high level based on the output of the inverter module. The pull-down module pulls down the output signal to a low level under the control of the received input signal and the second clock signal. By arranging the inverter module, it can be ensured that no floating point exists at the gate of the output transistor so that it is not affected by leak point, thereby maintaining stable signal output and improving stable output ability of the shift register.
Abstract:
Disclosed are an active layer ion implantation method and an active layer ion implantation method for thin-film transistor. The active layer ion implantation method comprises: applying a photoresist on the active layer; and implanting ions into the active layer through the photoresist.
Abstract:
The present disclosure relates to a shift register and a display apparatus, wherein the shift register comprising an input module, a pull-down module, an inversion module and a first pull-up module; wherein, the input module supplies an input signal voltage to a pull-down node in response to a first clock signal, wherein the pull-down node is an output node of the input module; the pull-down module stores the input signal voltage and supplies a second clock signal to an output terminal in response to the pull-down node; the inversion module supplies a positive power supply voltage or a negative power supply voltage to a first pull-up node in response to the pull-down node; and the first pull-up module supplies the positive power supply voltage to the output terminal in response to the first pull-up node. Some or all the floating nodes in the shift register are not floated any more by improvement; as an alternative, the sources/drains of the TFTs subjected to the effects of the floating nodes are controlled so that the output stability of the shift register is improved.
Abstract:
The present application discloses a pixel circuit of a photo detector panel. The pixel circuit includes a reset sub-circuit for resetting voltages at a first node and a second node, a photoelectric-conversion sub-circuit coupled to the first node and configured to convert an optical signal to a first voltage at the first node, a compensation sub-circuit coupled between the first node and the second node and configured to store the first voltage and determine a second voltage at the second node. The pixel circuit further includes an integration sub-circuit coupled to the first node and to determine a third voltage at the second node to be applied to a gate of a driving transistor to generate a current flowing from an input port provided with a bias voltage to an output port. The current is substantially independent from a threshold voltage of the driving transistor and the bias voltage.
Abstract:
A pixel circuit, a display panel and a driving method thereof are disclosed. The pixel circuit includes a light-emitting element, a light-emitting control circuit, a touch detection circuit and a signal line. The light-emitting control circuit is electrically connected to the light-emitting element, and is configured to drive the light-emitting element to emit light; the touch detection circuit is configured to determine whether or not a touch action occurs based on intensity of light incident onto the touch detection circuit; and the signal line is configured to be electrically connected to an input terminal of the light-emitting control circuit and an output terminal of the touch detection circuit.