Abstract:
Systems for the delivery of endoluminal devices are disclosed. An illustrative system may include a delivery sheath having an inner sheath and an outer sheath. The delivery sheath may be configured to restrain a stent in a compressed delivery configuration. The outer sheath may cover the entire length of the stent and the inner sheath may cover a portion of the length of the stent.
Abstract:
A medical device system may include an elongate shaft having a lumen extending from a proximal end to a distal end, a proximal release wire, and a distal release wire. The proximal release wire may extend distally from a proximal end configured to remain outside the body to a distal end and may be slidably disposed within the lumen of the elongate shaft. The proximal release wire may include a distal stopper coupled to the distal end thereof. The distal release wire may extend distally from a proximal end to a distal end and may be slidably disposed within the lumen of the elongate shaft. The proximal end of the distal release wire may be slidably coupled to the distal end of the proximal release wire. The distal release wire may be configured to releasably attach a medical device to the distal end of the elongate shaft.
Abstract:
A variable-length microwave ablation probe is provided. The probe is configured to have a range of resonant frequencies. The probe includes a microwave antenna, an outer conductor, and a cap. The probe further includes a radiation window that is at least partially transparent to microwave energy. The distal boundary of the outer conductor or the proximal boundary of the cap varies in distance from the probe distal end. The probe can have a choke length, an arm length, a radiating portion length, and a cap length. The lengths can each affect the resonant frequency of the antenna. Some examples provide a variable choke length, a variable arm length, a variable radiating portion length, and/or a variable cap length.
Abstract:
The present invention provides systems and methods for accurately delivering embolic coils within a body lumen of a patient, as well as recapturing deployed embolic coils for removal or repositioning. In various embodiments, an embolic coil delivery system may include an elongate sheath with a lumen extending therethrough. An elongate shaft may be slidably disposed within the sheath. The shaft may comprise a split-distal end that defines an aperture. The split-distal end may be moveable between a contracted configuration and an expanded configuration. An embolic coil may include a proximal ball-tip that may be reversibly disposed within the aperture of the split-distal end.
Abstract:
Systems for the delivery of endoluminal devices are disclosed. An illustrative system may include a delivery sheath having an inner sheath and an outer sheath. The delivery sheath may be configured to restrain a stent in a compressed delivery configuration. The outer sheath may cover the entire length of the stent and the inner sheath may cover a portion of the length of the stent.
Abstract:
Some embodiments are directed to medical devices, and methods for making and using the medical devices. An exemplary endoprosthesis includes an expandable tubular framework having a proximal end, a distal end, and a lumen extending therethrough. The tubular framework includes a number of interconnected biostable struts. The tubular framework has a proximal region extending distally from the proximal end to an intermediate location, and a distal region extending proximally from the distal end to the intermediate location. The distal region of the tubular framework is more flexible than the proximal region.
Abstract:
Some embodiments are directed to medical devices, and methods for making and using the medical devices. An exemplary endoprosthesis includes an expandable tubular framework having a proximal end, a distal end, and a lumen extending therethrough. The tubular framework includes a number of interconnected biostable struts. The tubular framework has a proximal region extending distally from the proximal end to an intermediate location, and a distal region extending proximally from the distal end to the intermediate location. The distal region of the tubular framework is more flexible than the proximal region.