Wellbore inspection system and method for ultra-deep vertical shaft

    公开(公告)号:US11215046B2

    公开(公告)日:2022-01-04

    申请号:US17043691

    申请日:2019-11-11

    Abstract: Disclosed are a wellbore inspection system and method for an ultra-deep vertical shaft. The wellbore inspection system includes a wire rope moving system, inspection robots, a visual image acquisition system, a wireless communication module, a central control system, and an image post-processing system of an upper computer. The wire rope moving system includes a surface wire rope guide rail, an underground wire rope guide rail, a surface wire rope moving device, an underground wire rope moving device, and a wire rope. The visual image acquisition system includes explosion-proof cameras. After image information acquired by the explosion-proof cameras is processed by a lower computer, the processed image is transmitted by a wireless image transmission module to the image post-processing system of the upper computer. The central control system is connected to the inspection robots and the wire rope moving system, and the inspection robots are connected to the central control system.

    Coal mine advanced detection method for heading machine

    公开(公告)号:US11099146B1

    公开(公告)日:2021-08-24

    申请号:US17264412

    申请日:2020-03-13

    Abstract: When the heading machine tunnels, a current generated by a current excitation source enters a coal seam through a movable cutting pick to form a stray current. The stray current collected by a backflow net returns to a negative electrode of a power supply through a transition resistor. When information such as the water content of the coal seam changes, the stray current and a potential difference across the transition resistor also accordingly change, and the coal seam water content information is converted into an electric signal. When the potential difference across the transition resistor is applied to two ends of a piezoelectric ceramic, the piezoelectric ceramic extends or compresses, and the electric signal is converted into a strain signal. A sensing optical fiber converts the strain signal into an optical signal detectable by a photoelectric detector. The optical signal is analyzed to obtain the coal seam water content information.

    Drilling and Bursting Heading Machine
    57.
    发明申请

    公开(公告)号:US20180195388A1

    公开(公告)日:2018-07-12

    申请号:US15741192

    申请日:2016-08-11

    Abstract: A drilling and bursting heading machine, comprising a drilling and bursting device (1), an angle control device, a forward-backward telescopic device and a cantilever type heading machine (2), wherein the drilling and bursting device (1) is mounted on a forward-backward moving component of the forward-backward telescopic device by means of the angle control device, and the forward-backward telescopic device is mounted on the cantilever type heading machine (2); the drilling and bursting device (1) comprises a fixing support (1-20), as well as a rock drill component and a bursting component fixedly mounted on the fixing support (1-20) respectively; the angle control device comprises a mounting base (1-15), an auxiliary rotary hydraulic motor (1-14), an adjustment hydraulic cylinder (1-13) and a main rotary hydraulic motor (1-12); and when the forward-backward moving component of the forward-backward telescopic device completely extends out, the distance from a front end of the drilling and bursting device (1) to a working plane is shorter than the distance from a front end of a cutting head of the cantilever type heading machine (2) to the working plane. The drilling and bursting heading machine has a compact structure and is able to implement quick drilling and bursting on a hard rock stratum having a rock hardness f greater than 10 without increasing the energy consumption, so that the heading efficiency is improved and potential safety risks are reduced.

    HYDRAULIC ELEVATING PLATFORM HAVING NO GUIDE RAILS AND ELEVATING METHOD

    公开(公告)号:US20180170716A1

    公开(公告)日:2018-06-21

    申请号:US15542601

    申请日:2015-12-29

    Abstract: A hydraulic elevating platform having no guide rails and an elevating method. A hydraulic power pack drives three parallel hydraulic cylinders to work synchronously, thereby implementing the rising and falling of an elevating platform; when the elevating platform reaches a predetermined floor, an upper electric pushrod pushes a pedal assembly out, and then the pedal assembly drives a pedal to rise by means of a pedal elevating system until the pedal is flush with the surface of a loading table of the elevating platform; outward-swinging doors between the elevating platform and a floor open to form pedal guardrails; then sliding doors open and a man can step onto a stair via the pedal assembly. An eccentric loading adjusting means eliminates eccentric loading to achieve balance about the center of gravity, thereby eliminating the eccentric loading of the platform. The elevating platform is simple in structure, safe, reliable, and easy to maintain. The elevating platform, placed within a spiral stair, is convenient for movement of crowds and cargo delivery at certain scenarios and is widely applicable. The elevating method is simple to implement and effectively solves the eccentric loading problem caused by reasons such as outstretching of a pedal of a hydraulic elevating platform and uneven distribution of people on the elevating platform, so that the hydraulic elevating platform is more stable and reliable during operation.

    Horizontally movable vertical shaft rope guide and regulating method thereof

    公开(公告)号:US09975737B2

    公开(公告)日:2018-05-22

    申请号:US15520478

    申请日:2015-12-29

    CPC classification number: B66B17/00 B66B19/00 E21D7/02

    Abstract: The present invention relates to a horizontally movable vertical shaft rope guide and a regulating method thereof, which are suitable for guiding of hoisting containers in vertical shafts. The vertical shaft rope guide comprises a hoisting rope, and two hoisting containers suspended from the tail ends of the hoisting rope, wherein, cage guide ropes are led through guide cage lugs arranged on the two sides respectively, a tensioner arranged on the ground at the shaft top is connected to the upper end of each cage guide rope, and a connector arranged under a steel slot at the shaft bottom is connected to the lower end of each cage guide rope; a hydraulic cylinder is connected at the other side of each tensioner and the corresponding connector, and the hydraulic cylinder is connected to the tensioner or connector. During hoisting in the vertical shaft, the hydraulic cylinders are controlled to act in advance, to push the tensioners or connectors to move towards the center between the two hoisting containers, so that the cage guide ropes led through the guide cage lugs on the two sides of the hoisting containers get close to each other at the same time and wrap the hoisting container; thus, the horizontal displacement of the hoisting containers is restrained, and the impact of air flow on the two hoisting containers is minimized when the two hoisting containers meet.

Patent Agency Ranking