Abstract:
A wireless communication device is built from a base module and a plurality of front-end modules. Each of the plurality of front-end modules is configured to operate a different one of a plurality of radio frequency services and having a front-end module connector configured to removeably mate with a base module connector of the base module. A particular front-end module is connected to the base module. Upon connection of said particular front-end module to the base module connector, the base module reads information from a memory of said particular front-end module to determine the radio service that the particular front-end module is configured to operate and to supply the control signals to configure and control front-end circuitry of the front-end module to operate the radio service.
Abstract:
Bypassing radar in wide Dynamic Frequency Selection (DFS) channels utilizing puncturing may be provided. A first client device may be classified as eligible for puncturing and a second client device may be classified as not eligible for puncturing. Next, it may be determined that a subchannel in a bandwidth range should not be used. Then, in response to determining that the subchannel in the bandwidth range should not be used, the first client device may be steered to a first subset of the bandwidth range and the second client device may be steered to a second subset of the bandwidth range. The second subset of the bandwidth range may be smaller than the first subset of the bandwidth range.
Abstract:
In one embodiment, a system includes a processor to determine a number P of how many multi-user groups are to be formed to promote airtime fairness for N client devices in which each one client device of the N client devices will be equally represented in the to-be-formed multi-user groups and in which each of the to-be-formed groups is to be actively considered by a scheduler for transmission purposes, the N client devices being associated with N wireless connections with an access point having multi-user simultaneous communication multiple-input multiple-output technology, define P multi-user groups with each one multi-user group of the P multi-user groups having a capacity for M client devices from the N client devices, N being greater than M, and allocate the N client devices to the P multi-user groups with each one client devices of the N client devices being equally represented in the P multi-user groups.
Abstract:
A wireless access point device wirelessly communicates with a plurality of wireless client devices. The wireless access point includes a central processor subsystem and a plurality of transceiver devices each including a plurality of antennas, and a plurality of radio transceivers, each of the plurality of transceiver devices configured for deployment throughout a coverage area, each transceiver device being connected to the central processor subsystem via a respective cable. The central processor subsystem distributes in-phase and quadrature baseband samples across the plurality of transceiver devices associated with traffic to be transmitted and received via the plurality of transceiver devices in one or more frequency bands so as to synthesize a wideband multiple-input multiple-output transmission channel and a wideband multiple-input multiple-output reception channel. The access point transmit and receive functions are “split” or partitioned across the plurality of transceivers devices.
Abstract:
A central processor subsystem controls multiple transceivers. Each transceiver transmits protocol data units from antennas of that transceiver and produces receive waveforms from wirelessly received signals at the one or more antennas. A transmit waveform, including a frame addressed to one or more wireless client devices, is sent through a first transceiver to be transmitted wirelessly by the first transceiver on a frequency channel. A receive waveform, representative of the transmission by the first transceiver and wirelessly received at a second transceiver, is received from the second transceiver. While the transmit waveform is being sent to the first transceiver: a level of collision between the receive waveform and another transmission on the frequency channel is detected; and if the level of collision exceeds a threshold prior to an end of the receive waveform, the transmit waveform being sent to the first transceiver is modified to reduce the collision.
Abstract:
A third device stores a receive signal strength of a received response data unit transmitted by a second device in response to reception by the second device of a first data unit transmitted by a first device, obtains a clear channel access parameter included in a header of a second data unit transmitted by the first device to the second device. The clear channel access parameter is based on a sum of a transmit power used by the first device to transmit the second data unit to the second device and a receive signal strength of the response data unit at the first device. The third device determines a transmit power to be used by the third device to send a transmission to the fourth device based on transmission exchanges between devices in a particular service set.
Abstract:
In one embodiment, an apparatus includes a processor for processing a plurality of radio frequency chains at a wireless device in a block based modulation environment, recording subcarrier phases and differences between the subcarrier phases, and using the subcarrier phase differences to construct a feature vector for use in angle of arrival calculated positioning of a mobile device, and memory for storing the subcarrier phases and the feature vector.
Abstract:
A system and method are provided for performing stomp-and-restart techniques in distributed MU-MIMO system. A plurality of radio head devices are provided that are configured to be deployed separated from each other in a coverage region of interest of a wireless network. A central processor subsystem is provided that is in communication with the plurality of radio head devices. The central processor subsystem configured to perform several operations based on downconverted samples received from the plurality of radio head devices.
Abstract:
A third device stores a receive signal strength of a received response data unit transmitted by a second device in response to reception by the second device of a first data unit transmitted by a first device, obtains a clear channel access parameter included in a header of a second data unit transmitted by the first device to the second device. The clear channel access parameter is based on a sum of a transmit power used by the first device to transmit the second data unit to the second device and a receive signal strength of the response data unit at the first device. The third device determines a transmit power to be used by the third device to send a transmission to the fourth device based on transmission exchanges between devices in a particular service set.
Abstract:
An access point (AP) includes a transceiver to service wireless client traffic on wireless channels within a channel bandwidth. The AP services wireless client traffic in a first channel bandwidth and sets a receiver bandwidth to include the first channel bandwidth and a second channel bandwidth initially not available for servicing wireless client traffic. Concurrent with servicing the wireless client traffic in the first channel bandwidth, the AP searches the second channel bandwidth for any interference signal. If no interference signal is found in the second channel bandwidth, the AP declares the second channel bandwidth free of interference.