Optical systems and methods of characterizing high-k dielectrics

    公开(公告)号:US10989664B2

    公开(公告)日:2021-04-27

    申请号:US15256442

    申请日:2016-09-02

    Abstract: The disclosed technology generally relates to characterization of semiconductor structures, and more particularly to optical characterization of high-k dielectric materials. A method includes providing a semiconductor structure comprising a semiconductor and a high-k dielectric layer formed over the semiconductor, wherein the dielectric layer has electron traps formed therein. The method additionally includes at least partially transmitting an incident light having an incident energy through the high-k dielectric layer and at least partially absorbing the incident light in the semiconductor. The method additionally includes measuring a nonlinear optical spectrum resulting from the light having the energy different from the incident energy, the nonlinear optical spectrum having a first region and a second region, wherein the first region changes at a different rate in intensity compared to the second region. The method further includes determining from the nonlinear optical spectrum one or both of a first time constant from the first region and a second time constant from the second region, and determining a trap density in the high-k dielectric layer based on the one or both of the first time constant and the second time constant.

    Fabrication processes for effectively transparent contacts

    公开(公告)号:US10700234B2

    公开(公告)日:2020-06-30

    申请号:US15999264

    申请日:2018-08-17

    Abstract: In conventional solar cells with metal contacts, a non-negligible fraction of the incoming solar power is immediately lost either through absorption or reflection upon interaction with the contacts. Effectively transparent contacts (“ETCs”) for solar cells can be referred to as three-dimensional contacts designed to redirect incoming light onto a photoabsorbing surface of a solar cell. In many embodiments, the ETCs have triangular cross-sections. Such ETCs can be placed on a photoabsorbing surface such that at least one of their sides forms an angle with the photoabsorbing surface. In this configuration, the ETCs can redirect incident light onto the photoabsorbing surface, mitigating or eliminating reflection loss compared to conventional solar cells. When constructed in accordance with a number of embodiments of the invention, ETCs can be effectively transparent and highly conductive.

    Fabrication Processes for Effectively Transparent Contacts

    公开(公告)号:US20200152821A1

    公开(公告)日:2020-05-14

    申请号:US16745233

    申请日:2020-01-16

    Abstract: In conventional solar cells with metal contacts, a non-negligible fraction of the incoming solar power is immediately lost either through absorption or reflection upon interaction with the contacts. Effectively transparent contacts (“ETCs”) for solar cells can be referred to as three-dimensional contacts designed to redirect incoming light onto a photoabsorbing surface of a solar cell. In many embodiments, the ETCs have triangular cross-sections. Such ETCs can be placed on a photoabsorbing surface such that at least one of their sides forms an angle with the photoabsorbing surface. In this configuration, the ETCs can redirect incident light onto the photoabsorbing surface, mitigating or eliminating reflection loss compared to conventional solar cells. When constructed in accordance with a number of embodiments of the invention, ETCs can be effectively transparent and highly conductive.

    Bifacial Solar Modules Incorporating Effectively Transparent Contacts

    公开(公告)号:US20200028005A1

    公开(公告)日:2020-01-23

    申请号:US16243930

    申请日:2019-01-09

    Abstract: Bifacial solar cells have been gaining momentum due to their promise of reducing the price of photovoltaic generated electricity by increasing power output. In addition to front side illumination, bifacial solar cells can also accept photons incident on the rear side. In many embodiments, increased power output values of up to and around 50% can be achieved. In some circumstances, other values can be achieved. For example, ˜40-70% under cloudy conditions and between ˜13-35% under sunny conditions, depending on the height of the ground clearance, can be achieved. Other factors such as but not limited to the (spectral) albedo of the surroundings as well as the geometry in which the cells are mounted can strongly influence the power output. As can readily be appreciated, the exact amount of increased power output can vary widely depending on the configuration and operating conditions of the bifacial solar cell.

    Fabrication processes for effectively transparent contacts

    公开(公告)号:US20190074401A1

    公开(公告)日:2019-03-07

    申请号:US15999264

    申请日:2018-08-17

    Abstract: In conventional solar cells with metal contacts, a non-negligible fraction of the incoming solar power is immediately lost either through absorption or reflection upon interaction with the contacts. Effectively transparent contacts (“ETCs”) for solar cells can be referred to as three-dimensional contacts designed to redirect incoming light onto a photoabsorbing surface of a solar cell. In many embodiments, the ETCs have triangular cross-sections. Such ETCs can be placed on a photoabsorbing surface such that at least one of their sides forms an angle with the photoabsorbing surface. In this configuration, the ETCs can redirect incident light onto the photoabsorbing surface, mitigating or eliminating reflection loss compared to conventional solar cells. When constructed in accordance with a number of embodiments of the invention, ETCs can be effectively transparent and highly conductive.

Patent Agency Ranking