摘要:
A nonvolatile memory device includes a semiconductor substrate including a cell region and a peripheral circuit region, a cell gate on the cell region, and a peripheral circuit gate on the peripheral circuit region, wherein the cell gate includes a charge storage insulating layer on the semiconductor substrate, a gate electrode on the charge storage insulating layer, and a conductive layer on the gate electrode, and the peripheral circuit gate includes a gate insulating layer on the semiconductor substrate, a semiconductor layer on the gate insulating layer, an ohmic layer on the semiconductor layer, and the conductive layer on the ohmic layer.
摘要:
A memory device includes a substrate having a cell region, a low voltage region and a high voltage region. A ground selection transistor, a string selection transistor and a cell transistor are in the cell region, a low voltage transistor is in the low voltage region, and a high voltage transistor is in the high voltage region. A common source contact is on the ground selection transistor and a low voltage contact is on the low voltage transistor. A bit line contact is on the string selection transistor, a high voltage contact is on the high voltage transistor, and a bit line is on the bit line contact. A first insulating layer is on the substrate, and a second insulating layer is on the first insulating layer. The common source contact and the first low voltage contact extend to a height of the first insulating layer, and the bit line contact and the first high voltage contact extend to a height of the second insulating layer.
摘要:
The present invention relates to a semiconductor memory device having a voltage driving circuit. The semiconductor memory device includes: a core voltage node; a first driving unit having a first controller for comparing a feedback voltage level of the core voltage node with a reference voltage to output a first control signal, and a first pull-up driver for pulling up the core voltage node; a second driving unit having a second controller driven in response to the active signal as an enable signal to compare the feedback voltage level of the core voltage node with the reference voltage to output a second control signal, and a second pull-up driver for pulling up the core voltage node; and a selecting unit for selectively outputting the first control signal and the second control signal in response to the active signal as a select signal, in which the first pull-up driver is driven in response to the first control signal and the second pull-up driver is driven in response to an output signal of the selecting means.
摘要:
An automatic controlled delay circuit for use in a semiconductor memory device capable of detecting and adjusting a variation in delay with PVT variation delays a wordline activating signal by a predetermined time period and outputs the same as a bitline sense amplifier activating signal. The delay circuit is implemented with a plurality of delay blocks that are connected serially. The semiconductor device comprises a delay pulse signal generating block for generating a plurality of delayed pulse signals, each of which has different delay values at a time point at which the wordline activating signal is activated using an internal clock; a signal detecting block for detecting an activation time point of the bitline sense amplifier activating signal to generate a detected pulse signal; and a delay amount adjusting block for comparing the plurality of delayed pulse signals with the detected pulse signal to control the plurality of delay blocks.
摘要:
The present invention relates to a semiconductor memory device having a voltage driving circuit. The semiconductor memory device includes: a core voltage node; a first driving unit having a first controller for comparing a feedback voltage level of the core voltage node with a reference voltage to output a first control signal, and a first pull-up driver for pulling up the core voltage node; a second driving unit having a second controller driven in response to the active signal as an enable signal to compare the feedback voltage level of the core voltage node with the reference voltage to output a second control signal, and a second pull-up driver for pulling up the core voltage node; and a selecting unit for selectively outputting the first control signal and the second control signal in response to the active signal as a select signal, in which the first pull-up driver is driven in response to the first control signal and the second pull-up driver is driven in response to an output signal of the selecting means.