摘要:
The present invention provides SEM systems, SEM calibration standards, and SEM calibration methods that improved accuracy in critical dimension measurements. The calibration standards have features formed with an amorphous material such as amorphous silicon. Amorphous materials lack the crystal grain structure of materials such as polysilicon and are capable of providing sharper edged features and higher accuracy patterns than grained materials. The amorphous material can be bound to a silicon wafer substrate through an intermediate layer of material, such as silicon dioxide. Where the intermediate layer is insulating material, as is silicon dioxide, the intermediate layer may be patterned with gaps to provide for electrical communication between the amorphous silicon and the silicon wafer. Charges imparted to the amorphous silicon during electron beam scanning may thereby drain to the silicon wafer rather than accumulating to a level where they would distort the electron beam.
摘要:
The present invention provides systems and methods wherein scatterometry is used to control an implant processes, such as an angled implant process. According to the invention, data relating to resist dimensions is obtained by scatterometry prior to an the implant process. The data is used to determine whether a resist is suitable for an implant process and/or determine an appropriate condition, such as an angle of implant or implantation dose, for an implant process.
摘要:
One aspect of the present invention relates to a method of forming an innerlayer dielectric, involving the steps of providing a substrate having at least two metal lines thereon; providing a conformal insulation layer over the substrate and metal lines; forming a second insulation layer over the conformal insulation layer, the second insulation layer containing a void positioned between two metal lines; at least one of thinning and planarizing the second insulation layer; and forming a third insulation layer over the second insulation layer. Another aspect of the present invention relates to an innerlayer dielectric semiconductor structure, containing a semiconductor substrate having at least two metal lines thereon; a conformal insulation layer over the semiconductor substrate and metal lines, the conformal insulation layer having a substantially uniform thickness from about 250 Å to about 5,000 Å; a second insulation layer over the conformal insulation layer, the second insulation layer containing a void positioned between two metal lines; and a third insulation layer over the second insulation layer.
摘要:
An SOI device structure is provided which facilitates mitigation of charge build up caused by floating body effects. A plurality of local interconnects are formed from a top insulating layer to a top silicon layer of the SOI device structure. A ground contact is then formed from the top insulating layer to a bottom substrate layer of the SOI device structure. The ground contact extends through the insulating layer, an isolation region and an oxide layer to the bottom substrate layer.
摘要:
The present invention provides systems, methods, and standards for calibrating nano-measuring devices. Calibration standards of the invention include carbon nanotubes and methods of the invention involve scanning carbon nanotubes using nano-scale measuring devices. The widths of the carbon nanotube calibration standards are known with a high degree of accuracy. The invention allows calibration of a wide variety of nano-scale measuring devices, taking into account many, and in some cases all, of the systematic errors that may affect a nano-scale measurement. The invention may be used to accurately calibrate line width, line height, and trench width measurements and may be used to precisely characterize both scanning probe microscope tips and electron microscope beams.
摘要:
In one embodiment, the present invention relates to a method of forming a silicon oxynitride antireflection coating over a metal layer, involving the steps of providing a semiconductor substrate comprising the metal layer over at least part of the semiconductor substrate; depositing a silicon oxynitride layer over the metal layer having a thickness from about 100 Å to about 150 Å; and forming an oxide layer having a thickness from about 5 Å to about 50 Å over the silicon oxynitride layer to provide the silicon oxynitride antireflection coating. In another embodiment, the present invention relates to a method of reducing an apparent reflectivity of a metal layer having a first reflectivity in a semiconductor structure, involing forming a silicon oxynitride antireflection coating over the metal layer; wherein the silicon oxynitride antireflection coating formed over the metal layer has a second reflectivity and is formed by depositing silicon oxynitride on the metal layer by chemical vapor deposition and forming an oxide layer over the oxynitride, and the difference between the first reflectivity and the second reflectivity is at least about 60%.
摘要:
A dual damascene process and structure for fabricating semiconductor devices are disclosed. In one embodiment of the invention, a protection layer is deposited on top of a metal layer to protect the metal layer during subsequent etching of an oxide layer to form the via and damascene trench. Because the selectivity between the oxide layer and the protection layer is high, the number and complexity of processing steps are thereby reduced. Other embodiments of the present invention use a metal sealant layer and/or anti-reflective coating in conjunction with the protection layer in a dual-damascene process.
摘要:
A method for fabricating a T-gate structure is provided. A structure is provided that has a silicon layer having a gate oxide layer, a polysilicon layer over the gate oxide layer and an insulating layer over the gate oxide layer. An opening is formed extending partially into the insulating layer. The opening in the insulating layer extends from a top surface of the insulating layer to a first depth. Spacers are then formed on the sides of the opening. The opening is then extended in the insulating layer from the first depth to a second depth. The opening is wider from the top surface of the insulating layer to the first depth than the opening is from the first depth to the second depth. The spacers are then removed from the opening. The opening is then filled with a conductive material to form a T-gate structure.
摘要:
One aspect of the present invention relates to a method of inspecting a patterned substrate using an SEM, involving the steps of evaluating the patterned substrate to determine if charges exist thereon; introducing the patterned substrate having charges thereon into a processing chamber of the SEM; inspecting the patterned resist using an electron beam generated by the SEM; and introducing a cleaner containing ozone into the processing chamber of the SEM. Another aspect of the present invention relates to a system for processing a patterned substrate, containing a charge sensor for determining if charges exist on the patterned substrate and measuring the charges; a means for contacting the patterned substrate with a cleaner containing ozone to reduce the charges thereon; a controller for setting at least one of time of contact between the patterned substrate and the cleaner, temperature of the cleaner, concentration of ozone in the cleaner, and pressure under which contact between the patterned substrate and the cleaner occurs; and a device for inspecting the patterned substrate with an electron beam.
摘要:
Disclosed are methods for eliminating and/or mitigating the formation of footing and/or T-tops in a resist pattern. A substrate with or without an antireflective coating layer may be treated with an acidic composition prior to the formation of a resist layer. The acid treatment prevents the loss of photo generated acid from the resist by either quenching and/or neutralizing the bases, and thereby reduces the formation of footing. The surface of a resist layer which has been irradiated may be treated with an acidic composition prior to post-exposure bake. The acid treatment prevents the loss of photo generated acid from the resist by either compensating for the evaporation and/or neutralization of the bases and thereby prevents the formation of T-tops.