摘要:
A method of fabricating a split gate flash memory. A substrate is provided for implantation with first ions to form a source region in the substrate. Second ions are implanted into the substrate to form a drain region in the substrate, wherein the source region is connected to the drain region. A part of the substrate is defined to form a number of trenches, wherein the trenches are located between the source region and the drain region. A tunneling oxide layer is formed along the profile of the trenches and on the surface of the substrate. The trenches are subsequently filled with a first polysilicon layer, wherein the depth of the first polysilicon layer is between that of the source region and that of the drain region in the substrate. An inter-dielectric layer is formed over the surface on the substrate and the first polysilicon layer, and a second polysilicon layer is formed on the substrate. The second polysilicon layer, the inter-dielectric layer, and the first poysilicon layer are defined to complete the fabricating of the flash memory device.
摘要:
A method of fabricating a flash memory. A heavily doped region with the opposite polarity of the drain region is formed between the channel region and the drain region. The heavily doped region is in a bar shape extending towards both the drain and the source regions along a side of the floating gate. Furthermore, the reading operation is performed in reverse by applying a zero voltage to the drain region, and a non-zero voltage to the source region.
摘要:
A method is provided for fabricating an EEPROM (EEPROM (electrically erasable and programmable read-only memory) device, which can help improve the quality of the tunneling oxide layer in the EEPROM device for reliable operation of the EEPROM device. This method is characterized in that the portion of the tungsten silicide (WSi) layer that is directly laid above the tunneling oxide layer is removed, while still allowing all the other part of the tungsten silicide layer to remain unaltered. As a result, in the subsequent heat-treatment process, the degradation in the quality of the tunneling oxide layer that occurs in the prior art due to the forming of a trapping center therein can be prevented. The tunneling oxide layer is thus more assured in quality, allowing the resultant EEPROM to operate reliably with high performance.
摘要:
A process for fabricating compact contactless flash memory array for semiconductor EEPROM devices having a number of memory cell units is disclosed. Field oxide layers for the flash memory array are first grown over the surface of an SOI wafer. Gate oxide layers are then grown. Floating gates are then formed by patterning the first polysilicon layer. Source/drain buried bitlines for the flash memory array are formed. A first BPSG (borophosphosilicate glass) layer is deposited and then reflown and etched back. An oxide-nitride-oxide layer is formed. A second polysilicon layer is deposited with in-situ dope. A WSi.sub.x layer then forms. Stacked gates for the flash array are formed by patterning into the formed oxide-nitride-oxide, second polysilicon and WSi.sub.x layers. The stacked gates are then covered with a second BPSG layer. Contact openings for the source/drain buried lines are formed. Metal lines leading into the contact openings are then formed for interconnecting the memory cells in the flash memory array with peripheral control circuits of the semiconductor EEPROM devices.
摘要:
A flash memory cell is fabricated by forming a lightly-doped region with only an implantation procedure to avoid lateral diffusion resulting from an increased overlap between the source region and gate as well as a short channel effect, while surrounding the source region with the lightly-doped region to thereby increase the breakdown voltage between the source region and the substrate.
摘要:
A flash memory cell structure comprising a semiconductor substrate having a first transistor and a second transistor formed thereon. The first transistor has a stacked gate and a first source/drain regions, wherein the stacked gate further includes a floating gate and a control gate. The control gate is formed above the floating gate. The second transistor is electrically connected in series with the first transistor. The second transistor functions as a select transistor and includes a gate and a second source/drain regions.
摘要:
A process for fabricating an improved planar field oxide (FOX) structure on a silicon substrate was achieved. The process involves forming recessed areas in the silicon substrate where the field oxide is require. A thin silicon oxide is formed on the surface of the recessed areas as a nucleation layer and then a thicker silicon oxide layer is selectively deposited in the recess areas by Liquid Phase Deposition (LPD). The planar FOX structure formed by LPD can be used in conjunction with a FOX structure formed by the conventional LOCal Oxidation of Silicon (LOCOS) process on the same substrate. The planar field oxide formed by LPD eliminates the bird beak structure and the lateral diffusion of the channel stop implant commonly associated with the LOCOS structure.
摘要:
A method for fabricating a capacitor having a fin-shaped electrode on a dynamic random access memory (DRAM) cell having increased capacitance was achieved. The capacitor is fabricated on a silicon substrate having an active device region. The device region contains a metal-oxide-semiconductor field effect transistor (MOSFET), having one capacitor aligned over and contacting the source/drain of the MOSFET in the device region. The capacitor is increased in capacitance by forming a multilayer insulator structure over the storage capacitor area and recessing alternate layers, then using the form as a mold for forming a polysilicon fin-like bottom capacitor electrode. The remaining multilayer mold is removed and a high dielectric constant insulator is deposited on the bottom electrode as the inter-electrode dielectric. The top capacitor electrode is formed by depositing a doped polysilicon layer which also fills the recesses in the bottom electrode forming inter-digitized fin-shaped top and bottom capacitor electrodes and completing a dynamic random access memory (DRAM) cell.
摘要:
A process for fabricating a storage capacitor for memory cell units of a DRAM memory device to achieve an increased capacitance value. The process includes first forming a transistor including a gate, a source region, and a drain region on the silicon substrate of the device. The gate includes a first polysilicon layer covered by an insulating layer. A silicon nitride layer is formed covering the transistor and a silicon oxide layer is formed on the silicon nitride layer. A contact opening is formed in the silicon oxide layer and the silicon nitride layer which exposes the surface of the transistor drain/source region. The silicon oxide layer has an edge portion extending toward the cavity of the contact opening more than the edge of the silicon nitride layer below it extends. A second polysilicon layer is then formed in the contact opening, covering the exposed drain region, the gate, and the edge portion of the silicon oxide layer and the silicon nitride layer. The second polysilicon layer thus provides the first electrode of the storage capacitor. A dielectric layer is formed on the second polysilicon layer to provide the dielectric of the storage capacitor and a third polysilicon layer is formed on the dielectric layer to provide the second electrode of the storage capacitor.
摘要:
A semiconductor device is formed on a substrate lightly doped with a dopant, a source region and a drain region in the substrate on the surface thereof, a dielectric layer deposited upon the substrate, a first floating gate layer formed on the dielectric layer, a second floating gate layer formed on the the first floating gate layer, a second dielectric material deposited upon the surface of the first floating gate electrode, a control gate electrode deposited upon the surface of the additional dielectric material, and means for applying a voltage to the control gate electrode.