Abstract:
Overlaying visual interface information atop a video signal without obscuring desired features of the video signal. The video signal may contain one or more pre-selected features, such as text. Two or more display sections equally divide the video signal, and any pre-selected features in the video signal are identified as residing in particular display sections. Depending on the nature of the features, the selected visual interface information is placed atop the video signal in a display section not containing any pre-selected features so as not to cover or obscure the features or is placed over specified features that do not significantly contribute to the video signal, such as blank or static screen regions. A hierarchy of preferred display sections for placing the visual interface information may be created to optimize the placement thereof. The methods for overlaying visual interface information find particular application with interactive television systems.
Abstract:
To prevent disorientation, the described systems and methods continuously maintain a visual landmark during electronic navigation of a one-dimensional list of items or a two-dimensional information grid in situations where only a part of the list or the information grid is displayed at a given time. In one implementation, an electronic program guide is dynamically scaled to maintain visibility of a navigation starting point during browsing with rudimentary navigation controls, but reverts back to a legible scale when navigation stops.
Abstract:
The current application is directed to an intelligent-thermostat-controlled environmental-conditioning system in which computational tasks and subcomponents with associated intelligent-thermostat functionalities are distributed to one or more of concealed and visible portions of one or more intelligent thermostats and, in certain implementations, to one or more intermediate boxes. The intelligent thermostats are interconnected to intermediate boxes by wired and/or wireless interfaces and intelligent thermostats intercommunicate with one another by wireless communications. Wireless communications include communications through a local router and an ISP, 3G and 4G wireless communications through a mobile service provider. Components of the intelligent-thermostat-controlled thermostat-controlled environmental-conditioning system may also be connected by wireless communications to remote computing facilities.
Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
A user-friendly programmable thermostat is described that includes a central electronic display surrounded by a ring that can be rotated and pressed inwardly to provide user input in a simple and elegant fashion. The current temperature and setpoint are graphically displayed as prominent tick marks. Different colors and intensities can be displayed to indicate currently active HVAC functions and an amount of heating or cooling required to reach a target temperature. The setpoint can be altered by user rotation of the ring. The schedule can be displayed and altered by virtue of rotations and inward pressings of the ring. Initial device set up and installation, the viewing of device operation, the editing of various settings, and the viewing of historical energy usage information are made simple and elegant by virtue of the described form factor, display modalities, and user input modalities of the device.
Abstract:
A thermostat for controlling an HVAC system and related systems, methods, and computer program products for facilitating user-friendly installation of the thermostat are described. For one embodiment, automated installation verification is performed by the thermostat by automatically sensing which wires have been inserted, selecting a candidate HVAC operating function (e.g., heating or cooling) that is consistent with a subset of HVAC signal types indicated by the inserted wires, applying control signals to the HVAC system to invoke that HVAC operating function, and processing a time sequence of acquired temperature readings to determine whether that HVAC operating function was successfully carried out. For one embodiment, the initial automated testing of the heating and cooling functions are only carried out at times for which such heating or cooling function would normally be invoked during normal operation of the thermostat. Automated determination of a heat pump call convention is also described.
Abstract:
The current application is directed to an intelligent-thermostat-controlled environmental-conditioning system in which computational tasks and subcomponents with associated intelligent-thermostat functionalities are distributed to one or more of concealed and visible portions of one or more intelligent thermostats and, in certain implementations, to one or more intermediate boxes. The intelligent thermostats are interconnected to intermediate boxes by wired and/or wireless interfaces and intelligent thermostats intercommunicate with one another by wireless communications. Wireless communications include communications through a local router and an ISP, 3G and 4G wireless communications through a mobile service provider. Components of the intelligent-thermostat-controlled thermostat-controlled environmental-conditioning system may also be connected by wireless communications to remote computing facilities.