摘要:
A medical device is provided that comprises a lead assembly. The lead assembly includes at least one intra-cardiac (IC) electrode, an extra-cardiac (EC) electrode and a subcutaneous remote-cardiac (RC) electrode. The IC electrode is configured to be located within the heart. The EC electrode is configured to be positioned proximate to at least one of a superior vena cava (SVC) and a left ventricle (LV) of a heart. The RC electrode is configured to be located remote from the heart. An extra-cardiac impedance (ECI) module is configured to measure extra-cardiac impedance along an ECI vector between the EC and RC electrodes to obtain ECI measurements. An arrhythmia monitoring module is configured to declare a potential atrial arrhythmia to be an atrial arrhythmia based on the hemodynamic performance determined from the ECI measurements. The hemodynamic performance assessment module is further enabled to compare a current ECI pattern with a prior baseline ECI waveform.
摘要:
A medical device is provided that comprises a lead assembly. The lead assembly includes at least one intra-cardiac (IC) electrode, an extra-cardiac (EC) electrode and a subcutaneous remote-cardiac (RC) electrode. The IC electrode is configured to be located within the heart. The EC electrode is configured to be positioned proximate to at least one of a superior vena cava (SVC) and a left ventricle (LV) of a heart. The RC electrode is configured to be located remote from the heart. An arrhythmia monitoring module is configured to analyze intra-cardiac electrogram (IEGM) signals from the at least one IC electrode to identify a potential atrial arrhythmia. An extra-cardiac impedance (ECI) module is configured to measure extra-cardiac impedance along an ECI vector between the EC and RC electrodes to obtain ECI measurements. The hemodynamic performance (HDP) assessment module is configured to determine a hemodynamic performance based on the ECI measurements. The arrhythmia monitoring module is configured to declare the potential atrial arrhythmia to be an atrial arrhythmia based on the hemodynamic performance determined from the ECI measurements. The medical device further provides the HDP assessment module that derives a current ECI waveform from current ECI measurements and compares the current ECI pattern with a prior ECI waveform that is derived from prior ECI measurements.
摘要:
A surface electrocardiogram (EKG) is emulated using signals detected by internal leads of an implanted device. In one example, emulation is performed using a technique that concatenates portions of signals sensed using different electrodes, such as by combining far-field ventricular signals sensed in the atria with far-field atrial signals sensed in the ventricles. In another example, emulation is performed using a technique that selectively amplifies or attenuates portions of a single signal, such as by attenuating near-field portions of an atrial unipolar signal relative to far-field portions of the same signal. The surface EKG emulation may be performed by the implanted device itself or by an external programmer based on cardiac signals transmitted thereto. A transtelephonic monitoring network is also described, wherein the emulated surface EKG (or raw data used to emulate the EKG) is relayed from an implanted device to a remote monitor, typically installed in a physician's office.
摘要:
An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
摘要:
Techniques are provided for evaluating heart failure within a patient. In one example, the implantable device detects a decrease, if any, in selected morphological parameters derived from the intracardiac electrogram (IEGM) that are indicative of possible heart failure, such as paced depolarization integrals (PDI) or peak-to-peak amplitudes of QRS-complexes. The device also detects a decrease, if any, in transthoracic impedance, which is also indicative of possible heart failure. Acute heart failure is indicated if there is a decrease in the morphological IEGM parameters but no significant decrease in transthoracic impedance. Chronic heart failure is indicated if there is a decrease in transthoracic impedance but no significant decrease in the morphological IEGM parameters. If both transthoracic impedance and the morphological IEGM parameters are found to be decreasing significantly, the device issues a warning of severe heart failure.
摘要:
An implantable cardiac device minimizes apnea burden. In one implementation, the device administers a series of cardiac pacing trials using a different value for a pacing parameter in each trial and then measures an apnea burden corresponding to each trial in order to determine a value which reduces apnea burden when used for ongoing cardiac pacing. In one implementation the implantable cardiac device performs series of trials in cycles, during which a first series of trials determines a value for a first pacing parameter for reducing apnea burden while other pacing parameters are held constant. Subsequent series of trials subject the other pacing parameters, in turn, to their own series of pacing trials while holding the non-subjected pacing parameters constant. Through multiple cycles, the device optimizes each parameter in turn based on continually improving values for the other pacing parameters.
摘要:
A surface electrocardiogram (EKG) is emulated using signals detected by the internal leads of an implanted device. In one example, the emulation is performed using a technique that concatenates portions of signals sensed using different electrodes, such as by combining far-field ventricular signals sensed in the atria with far-field atrial signals sensed in the ventricles or by combining near-field signals sensed in the atria with near-field signals sensed in the ventricles. In another example, the emulation is performed using a technique that selectively amplifies or attenuates portions of a single signal sensed using a single pair of electrodes, such as by attenuating near-field portions of an atrial unipolar signal relative to far-field portions of the same signal or by attenuating atrial portions of a cross-chamber signal relative to ventricular portions to the same signal. The surface EKG emulation may be performed by the implanted device itself or by an external programmer based on cardiac signals transmitted thereto.
摘要:
Techniques are provided for predicting the onset of a heart condition within a patient based on impedance measurements. Briefly, overloads in fluid levels in the thorax and in ventricular myocardial mass within the patient are detected based on impedance signals sensed using implanted electrodes. The onset of certain heart conditions is then predicted based on the overloads. For example, pulmonary edema arising due to diastolic heart failure is predicted based on the detection of on-going overloads in both fluid levels and ventricular mass. Ventricular hypertrophy is detected based on an on-going ventricular mass overload without a sustained fluid overload. Various other heart conditions may also be predicted based on specific combinations of recent or on-going overloads. Evoked response is exploited to corroborate the predictions. Appropriate warning signals are generated and preemptive therapy is initiated.
摘要:
An implantable cardiac stimulation device which determines stimulation based upon the patient's body position and activity level while eliminating special implantation or calibration procedures. To eliminate such special implantation and calibration procedures, the stimulation device correlates the patient's body position using a multi-axis DC accelerometer or other sensor during times of high activity and determines a patient's standing position value. During other times, the stimulation device compares the signals from the accelerometer to the standing position value to determine the patient's current body position. Based upon the current body position and the activity level, the stimulation device determines the necessary stimulation to deliver to the patient.
摘要:
Methods and apparatus are provided for measuring the impedance of a patient's body. Pulse generating circuitry within a rate-responsive pacemaker is used to generate an impedance measurement signal that is applied to the body of the patient with conventional pacemaker leads. The impedance measurement signal contains a series of multiphasic impedance measurement waveforms, which have no net DC value and zero value after second integration. The impedance measurement signal allows the impedance of the body to be measured without interfering with external cardiac monitoring equipment such as electrocardiogram machines.