Abstract:
An audio system of a vehicle includes: an acceleration state module that sets an acceleration state signal to a first state when a longitudinal acceleration of the vehicle is greater than a first predetermined acceleration, where the first predetermined acceleration is positive; a sound control module that selectively sets audio characteristics for an acceleration event in response to determinations that all of: (i) the acceleration state signal is in the first state; (ii) an electric motor is outputting positive torque to a powertrain of the vehicle; and (iii) a driver is applying pressure to an accelerator pedal; and an audio driver module that, based on the audio characteristics, applies power to speakers to output sound within a passenger cabin of the vehicle.
Abstract:
Methods and systems for enhancing vehicle sound are provided. In accordance with one embodiment, a vehicle includes a powertrain, one or more sensors, and a processor. The one or more sensors are configured to measure a sound, a vibration, or both, produced by one or more vehicle components pertaining to the engine. The processor is configured to enhance the sound for audible display for one or more individuals within or in proximity to the vehicle.
Abstract:
A system for controlling sound character of a vehicle includes one or more performance enhancement systems operable to enhance powertrain performance. Each of the one or more performance enhancement systems includes a performance control input. One or more sound enhancement systems are operable to adjust at least one of an external vehicle sound and an interior sound perceived by vehicle occupants. Each of the one or more sound enhancement system includes a sound enhancement control input. A sound character control system includes a central controller operably connected to at least one performance control input and at least one sound enhancement control input. The central controller coordinates operation of at least two of the one or more performance enhancement systems and the one or more sound enhancement systems to establish one of a desired exterior sound character and an interior sound character.
Abstract:
A method of masking road noise for a vehicle includes monitoring, through a processor, one or more vehicle mounted transducers for noise produced by an interaction between the vehicle and a road surface, detecting, through the processor, an audible signal having one of an undesirable frequency and an undesirable magnitude associated with the interaction between the vehicle and the road surface, generating, through the processor, a masking signal having a frequency that will mask the audible signal having the one of the undesirable frequency and undesirable magnitude, and emitting the masking signal through one or more vehicle speakers.
Abstract:
A selectively tunable exhaust noise attenuation device includes a body having an outer surface and an inner surface that defines an exhaust volume. An inlet is coupled to the body and fluidically connected to the exhaust volume. A first outlet is coupled to the body and fluidically connected to the inlet and selectively fluidically connected to the exhaust volume and a second outlet coupled to the body and fluidically connected to the exhaust volume. A first conduit including a primary exhaust gas flow path directly fluidically connects the inlet and the first outlet. A second conduit includes a first end and a second. The second conduit defines a secondary exhaust gas flow path. A valve is fluidically connected to one of the first and second conduits. The valve is arranged laterally off-set of the primary exhaust gas flow path.
Abstract:
An audio system of a vehicle includes a total frequencies module that selectively varies a total number of output frequencies based on one or more present operating parameters of the vehicle. An allocation module, based on one or more present operating parameters of the vehicle, determines an allocation indicative of: (i) a first portion of the total number of output frequencies allocated to outputting first predetermined sounds for internal combustion engine operation; and (ii) a second portion of the total number of output frequencies allocated to outputting second predetermined sounds for electric motor operation. Based on the total number and the first and second portions, an audio driver module applies power to speakers of a passenger cabin of the vehicle to: (i) output first predetermined sounds at harmonic frequencies of the internal combustion engine; and (ii) output second predetermined sounds at harmonic frequencies of the electric motor.
Abstract:
Methods and apparatus are provided for controlling noise in a compartment. The audio system includes an error microphone configured to receive sounds and generate an error signal corresponding to the received sounds. A processor in communication with the error microphone is configured receive the error signal from the error microphone and generate a noise-canceling signal based at least in part on the error signal and an acoustic transfer function. The audio system also includes a loudspeaker in communication with the processor to receive the noise-canceling signal and produce a noise-canceling sound wave based on the noise-canceling signal. The processor is also configured to receive at least one audio signal different from the error signal and to modify the acoustic transfer function utilizing the at least one audio signal.
Abstract:
A vehicle including a passenger compartment having a rear seating area is described. A method for monitoring the rear seating area of the passenger compartment includes monitoring a vehicle operating state comprising one of a key-on state and a key-off state and monitoring the rear seating area. A presence or absence of a passenger in the rear seating area is detected based upon the monitoring, and a control routine is executed based upon the vehicle operating state and the presence or absence of a passenger in the rear seating area.
Abstract:
A control system for a vehicle having a fixed gear transmission and an engine that outputs an actual RPM signal is provided. The control system includes a vehicle bus, a shifting module, a simulated RPM module, and an engine sound enhancement (“ESE”) module. The vehicle bus transmits a signal indicating a plurality of operating conditions of the vehicle. The shifting module receives the signal from the vehicle bus to determine if the operating parameters of the vehicle indicate that a gear shift by the fixed gear transmission is imminent within a predetermined amount of time. The simulated RPM module is in communication with the shifting module for generating a simulated RPM signal if the gear shift is imminent. The simulated RPM signal has a greater increase in engine RPM with respect to time prior to the gear shift compared to the actual RPM signal.
Abstract:
A method of masking sounds associated with a vehicle is provided. The method includes performing on processing circuitry, monitoring of vehicle data. A tonal disturbance type and a tone to mask associated with the tonal disturbance type are identified based on the vehicle data. A shaped band of sounds is determined based on the tone to mask. The shaped band of sounds covers a range of frequencies around the tone to mask. The shaped band of sounds is applied to an audio output of the vehicle.