Abstract:
A plasma actuator includes a first electrode disposed on a substrate, covered by a dielectric layer, and a second electrode disposed on the dielectric layer. In operation, the plasma actuator creates a plasma region, altering air flowing over the actuator. The plasma actuator in various embodiments: has no moving parts, helps to improve fuel economy by reducing aerodynamic drag, improves vehicle stability control under severe unsteady flow environments, reduces wind noise around a vehicle on which the actuator is used, and reduces emission and CO2 foot print through the fuel economy improvement.
Abstract:
An apparatus configured to reduce drag is provided. The apparatus includes a piezoelectric bellow configured to generate airflow, a power controller configured to output a signal to actuate the piezoelectric bellow, and a controller configured to control the power controller based on at least one from among pressure information and vehicle speed.
Abstract:
An apparatus configured to induce airflow over a sensor lens is provide. The apparatus includes a sensor lens; and a plasma actuator. The plasma actuator may include a dielectric element, a first electrode disposed under the dielectric element, a second electrode disposed on the dielectric element such that the second electrode is exposed, and a plasma layer disposed in between the first electrode and the second electrode. The plasma actuator may be disposed at a periphery of the sensor lens.
Abstract:
A vehicle wheel assembly includes a vehicle wheel including a wheel body having a center. The vehicle wheel defines a plurality of openings arranged annularly around the center of the wheel body. The vehicle wheel assembly further includes a self-deployed wheel shutter system coupled to the vehicle wheel. The self-deployed wheel shutter system includes a hub plate, an annular rim disposed around the hub plate, and a plurality of shutter flaps. The shutter flaps are movable relative the vehicle wheel between an extended position and a retracted position. In the extended position, the shutter flaps cover the openings of the vehicle wheel to preclude air from flowing through the vehicle wheel. When the plurality of shutter flaps are in the retracted position, the openings are exposed, allowing the air to flow through the openings of the vehicle wheel.
Abstract:
A plasma actuator includes a first electrode disposed on a substrate, covered by a dielectric layer, and a second electrode disposed on the dielectric layer. In operation, the plasma actuator creates a plasma region, altering air flowing over the actuator. The plasma actuator in various embodiments: has no moving parts, helps to improve fuel economy by reducing aerodynamic drag, improves vehicle stability control under severe unsteady flow environments, reduces wind noise around a vehicle on which the actuator is used, and reduces emission and CO2 foot print through the fuel economy improvement.
Abstract:
A strake may direct air around a structure that moves in a forward direction and that has a first side and a second side. The strake may include a first section that may curve inward and rearward around the structure and that may be shaped to direct oncoming air toward the second side. The strake may include a second section that may be positioned further in the forward direction than a portion of the structure and may be shaped to direct oncoming air toward the first or second side.
Abstract:
A plasma actuator includes a first electrode disposed on a substrate, covered by a dielectric layer, and a second electrode disposed on the dielectric layer. In operation, the plasma actuator creates a plasma region, altering air flowing over the actuator. The plasma actuator in various embodiments: has no moving parts, helps to improve fuel economy by reducing aerodynamic drag, improves vehicle stability control under severe unsteady flow environments, reduces wind noise around a vehicle on which the actuator is used, and reduces emission and CO2 foot print through the fuel economy improvement.
Abstract:
A strake may direct air around a structure that moves in a forward direction and that has a first side and a second side. The strake may include a first section that may curve inward and rearward around the structure and that may be shaped to direct oncoming air toward the second side. The strake may include a second section that may be positioned further in the forward direction than a portion of the structure and may be shaped to direct oncoming air toward the first or second side.
Abstract:
A portable device recharging system includes a base unit generating an electromagnetic field. A portable device includes a rechargeable battery inductively charged by the electromagnetic field. Spacers are disposed between the portable device and the base unit. The spacers support the portable device and maintain an air gap between the base unit and the portable device.
Abstract:
The present disclosure relates to apparatuses for conducting battery heat comprising an active material positioned between a first cover portion and second cover portion, each portion comprising a thermal conductive material and protection material connected to the thermal conductive material. Also included are systems for conducting heat includes a plurality of pouch cells each comprising an active material positioned between a first cover portion and second cover portion and a plurality of frames, at least one frame positioned between each of the plurality of pouch cells. Finally included are methods, for assembling a pouch cell structure for use in conducting battery heat, comprising constructing a pouch cell assembly by alternating a sequence of pouch cells and frames; positioning a first contact edge of each of pouch cell proximal to a first heat sink and a second contact edge of each pouch cells proximal to a second heat sink opposite the first contact edge; and connecting the first heat sink to the first contact edge of each of the plurality of pouch cells and connecting the second heat sink to the second contact edge of each of the plurality of pouch cells.