Abstract:
An unevenly segmented multipole is described. A mass spectrometer employing the unevenly segmented multipole is provided, as well as methods of analyzing ions by mass spectrometry using the unevenly segmented multipole.
Abstract:
An ion mobility spectrometer comprising a drift tube having a central axis, along which a plurality of ring electrodes are arranged is provided. The plurality of ring electrodes provides a linear potential gradient along the central axis of the drift tube. In addition an RF voltage source coupled to the plurality of ring electrodes generates an oscillating RF potential within the internal region of each of the ring electrodes. The oscillating RF potential influences radial motion of the ions within the drift tube so that the ions remain within a radial space defined by the internal regions of the electrodes.
Abstract:
Apparatus and methods are disclosed for conducting procedures of tandem mass spectrometry using a single quadrupole mass analyzer. In one embodiment of the present invention a mass spectrometry apparatus comprises a single quadrupole mass analyzer having a first end opposite a second end. A source of charged particles is adjacent the first end of the quadrupole mass analyzer and a gate for controlling passage of charged particles is present between the source of charged particles and the first end. The apparatus further comprises a first element between the gate and the first end, a second element adjacent the second end, and a detector for detecting charged particles, or fragments thereof, exiting the quadrupole mass analyzer. In a method in accordance with the invention, charged particles from a source thereof are directed into the quadrupole mass analyzer to select charged particles by their mass to charge ratio. The selected charged particles are directed to a zone adjacent the quadrupole mass analyzer to subject the selected charged particles to collisional forces to form fragments thereof, which are temporarily stored in the zone. To separate the fragments, the fragments are directed from the zone into the quadrupole mass analyzer in a direction opposite to the direction of the charged particles introduced from the source. The fragments are then detected.
Abstract:
A technique that modulates the power of a inductively coupled plasma (ICP) according to the operative modes of a spectrometer. An analytical apparatus of the present invention contains an inductively coupled plasma generator (ICPG) and a spectrometer. The ICPG generates a plasma for forming ionic and excited molecular species from a sample. The spectrometer analyzes the ionic and excited molecular species formed. The spectrometer operates in an analysis mode wherein the ionic and excited molecular species are identified according to physical characteristics of the species to provide data on the species and further has a washout mode wherein the spectrometer flushes out interfering ions and molecules and provides no significant data on the sample. The controller modulates the ICPG to operate in power cycles, at each cycle the ICPG operates in an analysis period and a stand-by period. By modulating the plasma power, the power consumption and heat dissipation can be reduced. When such a power modulated plasma source is coupled to, for example, a time-of-flight mass spectrometer (TOFMS), high analytical performance can be achieved with simultaneous multi-element detection capability.
Abstract:
A time-of-flight mass spectrometer is disclosed having improved signal to noise characteristics and the ability to reject specific signal ions. The mass spectrometer includes a plasma source that generates the ions, a ion pulser that directs ions toward an ion detector, and a retarding grid assembly charged to repel noise ions. The retarding grid assembly maintains at least a predetermined minimum potential sufficient to repel all ions, except those which have been deliberately sampled by a deliberate pulse of the ion pulser. As a result, noise ions which unintentionally escape the ion pulser are repelled by the retarding grid assembly, and mass peaks are more easily detected and distinguished from background noise. Specific ions of the desired signal are also selectively rejected by stepping up the potential of the retarding grid assembly at a predetermined time calculated to correspond to the time-of-flight of the specific ions from the ion pulser. A grounded grid is also provided to maintain a field-free region away from the retarding grid assembly, such that rejection of ions may be tailored to a narrow range of ion masses.