Abstract:
The present invention relates to a deflector of a micro-column electron beam apparatus and method for fabricating the same, which forms a seed metal layer and a mask layer on both sides of a substrate, and exposes some of the seed metal layer on which deflecting plates, wirings and pads are to be formed by lithography process using a predetermined mask. The wirings and pads are formed by plating metal on the exposed portion, and some of the metal layer is also exposed on which the deflecting plates are to be formed using a predetermined mask, and then the metal is plated with desired thickness, thereby the deflecting plates are completed. Therefore, by forming plurality of deflecting plates on both sides of the substrate at the same time through plating process, alignment between the deflecting plates formed on both sides of the substrate can be exactly made, and by fabricating a deflector integrated with the substrate and deflecting plates in a batch process, productivity and reproducibility is improved. In addition, since the deflecting plates, wirings and pads are directly formed on the substrate, structural safety is improved and thereby durability is also improved.
Abstract:
In an ion trap device using an RF electric field to trap ions, when the amplitude of the RF voltage for generating the RF electric field is changed from a first value to a second value, it is changed according to the exponential function of time. And the time constant of the exponential function is set equal to or longer than the time constant of the resonant circuit for generating the RF voltage. Owing to this, the time necessary to change the RF voltage is shortened, and an overshoot, undershoot, or ringing of an actual RF voltage on the electrode or electrodes of an ion trap is avoided when the RF voltage setting value is changed, so that the movement of ions in the ion trap is not disturbed and the throughput of the ion trap device is improved.
Abstract:
A laser-cooled fluorescence mass spectrometry apparatus includes an ion trap for trapping sample ions, laser-cooled ions, and probe ions therein; a first irradiating device for irradiating the sample ions, the laser-cooled ions, and the probe ions in the ion trap with a first laser beam for cooling the ions; a second irradiating device for irradiating the sample ions, the laser-cooled ions, and the probe ions in the ion trap with a second laser beam for detecting temperature changes in the ions; a detecting device for detecting the temperature changes in the ions; a first ion source for the sample ions; a second ion source for the laser-cooled ions; and a third ion source for the probe ions. The probe ions may be different ions than the laser-cooled ions, or the probe ions may be the same ions as the laser-cooled ions.
Abstract:
A process for manufacturing an electrostatic element for steering a charged particle beam. A cylindrical, non-conductive body having a bore therethrough is assembled with a cylindrical, conductive core also having a bore therethrough and sized to fit within the bore of the body. The core is secured within the bore of the body, and then longitudinally extending slots are cut completely through the core to create pole pieces that are electrically isolated from each other.
Abstract:
The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Abstract:
A mass spectrometer according to the present invention includes an ion lens composed of an even number of virtual rod electrodes 31, 32 positioned separately around the ion beam axis C, where each of the virtual rod electrodes is composed of a plurality of separate metallic plate electrodes aligned in a row. For example, the virtual rod electrode 32 consists of five lens electrodes 321-325 aligned in a row parallel to the ion beam axis C. A voltage composed of a DC voltage and a high frequency AC voltage superimposed thereon is applied to each of the plate electrodes 321-325, where the DC voltage is changed according to the position of the plate electrode while the high frequency AC voltage is the same irrespective of the position. Ions travelling through the ion lens oscillates transversally due to the electric field generated by the high frequency AC voltage and converge on the focal point F of the ion lens. There, the ions gain kinetic energy from the potential gradient due to the DC voltages, whereby the ions are accelerated. Thus, the ions keep travelling without being displaced too much from due converging paths even when they collide with molecules of residing gas, and enter the section behind the ion lens through the orifice of the skimmer 16. Thus, the convergence and acceleration of ions are effectively performed even when the pressure in the first interface chamber 12 is as high as near atmospheric pressure.
Abstract:
A time-of-flight spectrometer comprises a quadrupole ion trap (10) as an ion source, a drift tube (11) defining a field-free drift space, an ion reflector (12) and an ion detector (13). The quadrupole ion trap (10) has two end-cap electrodes (22, 23) and a ring electrode (21). End-cap electrode (22) has a central hole (24) through which ions to be extracted can pass. High voltage power supplies (34, 35) and associated switching devices (32, 33) are provided to supply extraction voltages to the end-cap electrodes (22, 23). The extraction voltage supplied to end-cap electrode (22) has the opposite polarity to the extraction voltage supplied to the other end-cap electrode (23) being respectively negative and positive voltages for positive ion extraction and respectively positive and negative voltages for negative ion extraction. The magnitude of the extraction voltage supplied to electrode (23) is in the range from 0.5 to 0.8 that of the extraction voltage supplied to electrode (22).
Abstract:
The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Abstract:
A method of operating a mass spectrometer having an elongated multipole rod set, in which a two dimensional RF field radially contains trapped ions in a mass to charge range of interest, and in which the ions are contained axially by a barrier field on an end lens and to which a low voltage DC is applied. Trapped ions are axially mass selectively ejected by taking advantage of the mixing of the degrees of freedom induced by the fringing fields and other anti-harmonicities in the vicinity of the end lens. Thus, ions can be mass selectively ejected at the exit end at the same time as ions are being admitted into the entrance end of the rod set, thereby taking better advantage of the ion flux from a continuous ion source. The axial mass selective ejection is performed by applying an auxiliary AC voltage to the end lens, or to the rods themselves, or both, and by scanning either the auxiliary AC voltage or the RF voltage on the rod set. Trapped ions can be concentrated near the exit lens by applying an axial field in the direction of the lens, or can be depleted by applying the axial field in the opposite direction. The axial field can be oscillated to dissociate trapped ions.
Abstract:
An improved method of operating a mass spectrometer having a linear ion trap wherein ions are axially ejected from the trap to a detector or subsequent mass analysis stage. The DC barrier field produced at the exit lens of the trap is scanned in conjunction with the scanning of other fields used to energize ions of select mass-to-charge ratios past the barrier field/exit lens. The technique can maximize the resolution obtainable from axial ejection over a wide mass range.