Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An air purification system includes a photocatalyst on a support disposed to contact airflow through an airflow channel passing across or through the support; an ultraviolet light emitting diode (UV-LED) disposed to emit ultraviolet light onto the photocatalyst, the UV-LED operated at a less than one hundred percent duty cycle, the duty cycle determined at least in part as a function of a desired minimum volatile organic compound conversion rate of air flowing through the airflow channel and a desired maximum by-product concentration of air flowing through an outlet of the airflow channel.
Abstract:
An air purification system includes a photocatalyst on a support disposed to contact airflow through an airflow channel passing across or through the support; an ultraviolet light emitting diode (UV-LED) disposed to emit ultraviolet light onto the photocatalyst, the UV-LED operated at a less than one hundred percent duty cycle, the duty cycle determined at least in part as a function of a desired minimum volatile organic compound conversion rate of air flowing through the airflow channel and a desired maximum by-product concentration of air flowing through an outlet of the airflow channel.
Abstract:
In one example, a method for forming a densified carbon-carbon composite material comprises infiltrating a carbon fiber preform with a monomer mixture for a condensed polynuclear aromatic (COPNA) resin; polymerizing and crosslinking the monomer mixture within the carbon fiber preform to form a crosslinked COPNA by subsequently heating the carbon fiber preform infiltrated with the monomer mixture to a polymerization temperature of the COPNA resin; and carbonizing the crosslinked COPNA resin within the carbon fiber preform by heating the crosslinked COPNA resin to a carbonization temperature to form the densified carbon-carbon composite material, wherein the carbonization temperature is greater than the polymerization temperature.