Abstract:
This application relates to the field of communications technologies, and discloses a bandwidth indication method and apparatus, to provide a solution of indicating, by a base station, an allocated bandwidth part to a terminal when the terminal does not know a carrier bandwidth. The method is: determining, by the base station, a virtual bandwidth allocated to the terminal, where the virtual bandwidth is a part of a carrier bandwidth, and a bandwidth allocated to the terminal falls within the virtual bandwidth; and sending, by the base station, position information of the virtual bandwidth to the terminal, where the position information is used to indicate a position of the virtual bandwidth.
Abstract:
An uplink resource grant method includes receiving, by a terminal, configuration information from a network device, where the configuration information includes information about a first uplink resource and information about a second uplink resource, and searching, by the terminal, a search space for a downlink control channel to obtain grant information. The search space includes a first control channel candidate set when the downlink control channel carries grant information of the first (or the second) uplink resource, and the search space includes a second control channel candidate set when the downlink control channel carries grant information of the second (or the first) uplink resource or grant information of a downlink resource. The first control channel candidate set is the same as the second control channel candidate set.
Abstract:
Embodiments of this application provide a sounding reference signal (SRS) transmission method, apparatus, and system, so as to implement sounding reference signal BP-based switching. The method includes: determining that a transmission conflict occurs between a sounding reference signal (SRS) on a first bandwidth part (BP) and an SRS on a second BP; and discarding the SRS on the first BP, where a priority of the SRS on the first BP is lower than a priority of the SRS on the second BP.
Abstract:
This application discloses a carrier switching solution for multi-carrier communication. A network device sends configuration information to a terminal. The configuration information includes first uplink carrier information and second uplink carrier information. The first uplink carrier information indicates that a first uplink carrier is an SRS switching-from uplink carrier. The second uplink carrier information indicates that a second uplink carrier is an SRS switching-to uplink carrier. At least one of the first uplink carrier and the second uplink carrier belongs to a cell including a supplementary uplink (SUL) carrier. The terminal may determine the SRS switching-from uplink carrier and the SRS switching-to uplink carrier in a plurality of configured uplink carriers based on the configuration information.
Abstract:
A method includes: determining, by an access network device, at least one piece of downlink control information, where the downlink control information includes at least one slot format indication; and sending, by the access network device, the downlink control information to a group of user equipment on a group common downlink control channel, where the group of user equipment operates in M bandwidth parts, the at least one slot format indication is used to indicate a slot format corresponding to N numerologies of the M bandwidth parts, and both N and M are positive integers greater than 1.
Abstract:
This application provides a resource allocation method which includes: determining a first location of a first frequency domain resource; determining a second location of at least one bandwidth part based on the first location and an offset between the first location and the second location; determining the at least one bandwidth part based on the second location of the at least one bandwidth part and a bandwidth size of the at least one bandwidth part; and transmitting at least one of physical signal information and physical channel information in a first bandwidth part, where the first bandwidth part includes one or more bandwidth parts in the at least one bandwidth part.
Abstract:
Disclosed is a preamble sending method, including: acquiring a first uplink transmission gap, where the first uplink transmission gap is a time interval between initiation, by a terminal, of current uplink transmission and termination of the most recent uplink transmission; and when the first uplink transmission gap is greater than or equal to at least one time threshold in a first preset time threshold, sending a Preamble that includes a DPCCH (dedicated physical control channel) to a network side. By using the method, a network-side device located at a base station can control uplink transmission power of the terminal according to a sent DPCCH pulse.
Abstract:
Embodiments of the present invention disclose a power control method and apparatus, where the method includes: performing a slow fading evaluation on an uplink channel of a UE to obtain a slow fading value of the uplink channel; comparing the slow fading value with a target slow fading value to obtain a first comparison result; generating, according to the first comparison result, first control signaling of a downlink control channel corresponding to the uplink channel, where the first control signaling is used to instruct the UE to adjust transmit power of the UE on the uplink channel; and sending the first control signaling to the user equipment UE. In the embodiments of the present invention, making full use of power efficiency, improving a cell throughput, and reducing neighboring cell interference.
Abstract:
Embodiments of the present invention provide a signal processing method and a terminal. The method includes: receiving a control signal. Channel state information between a coordinated base station and the terminal and between the serving base station and the terminal is determined. Information is about determined time difference or information about a phase difference of arrival between signals sent by the coordinated base station and the serving base station at the terminal according to the channel state information. Adjustment information is sent to the serving base station so that the serving base station adjusts the sending time, phase, or pre-coding manner of the signal according to the adjustment information.
Abstract:
A method for transmitting an absolute grant (AG) value and a user equipment, where the method includes receiving, by a user equipment, a conventional enhanced-absolute grant channel (E-AGCH) and a newly-added grant value detecting E-AGCH that are sent by a network side device, detecting, by the user equipment, AG information carried on at least one channel of the conventional E-AGCH and the newly-added grant value detecting E-AGCH, and controlling data transmission of the user equipment according to a detection result. Hence, continuity of the data transmission of the user equipment may be ensured, and transmission efficiency is improved.