Abstract:
The present invention is directed to systems, devices and methods for identifying biopolymers, such as strands of DNA, as they pass through a constriction such as a carbon nanotube nanopore. More particularly, the invention is directed to such systems, devices and methods in which a newly translocated portion of the biopolymer forms a temporary electrical circuit between the nanotube nanopore and a second electrode, which may also be a nanotube. Further, the invention is directed to such systems, devices and methods in which the constriction is provided with a functionalized unit which, together with a newly translocated portion of the biopolymer, forms a temporary electrical circuit that can be used to characterize that portion of the biopolymer.
Abstract:
Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
Abstract:
Gene expression is inhibited in a cell by introducing into the cell a lentiviral vector encoding a siRNA specific for the gene. Lentiviral vectors encoding siRNA specific for a cancer-associated gene inhibited expression of the gene and caused cell death after being introduced into cancer cells. Viral replication in HIV-infected cells was inhibited after introducing a lentiviral vector encoding siRNA specific for HIV genes in into the cells.
Abstract:
For use with a three-phase split boost converter having a primary stage with a primary rectifier and first and second primary boost switches coupled between an input and first and second outputs of the three-phase split boost converter, an auxiliary stage interposed between the input and the first and second outputs, a method of reducing input current total harmonic distortion (THD) and a converter incorporating the auxiliary stage or the method. In one embodiment, the auxiliary stage includes: (1) first, second and third auxiliary boost inductors coupled to corresponding phases of the input and (2) an auxiliary boost network interposed between the first, second and third auxiliary boost inductors and the first and second outputs and including (2a) an auxiliary three phase full-wave rectifier, (2b) first and second auxiliary boost diodes, and (2c) first and second auxiliary boost switches, coupled between the auxiliary three phase full-wave rectifier and the first and second auxiliary boost diodes, that cooperate to conduct currents through the first, second and third auxiliary boost inductors to reduce input current total harmonic distortion (THD) at the input of the three-phase split boost converter.
Abstract:
For use with a three-phase boost converter having a primary stage with a primary rectifier and a primary boost switch coupled between an input and output of the three-phase boost converter, an auxiliary stage, method of reducing input current total harmonic distortion (THD) at the input of the three-phase boost converter, and a three-phase boost converter employing the auxiliary stage and method. In one embodiment, the auxiliary stage includes first, second and third auxiliary boost inductors coupled to corresponding phases of the input. The auxiliary stage also includes an auxiliary boost switch, interposed between the first, second and third auxiliary boost inductors and the output, that conducts to draw corresponding phase currents through the first, second and third auxiliary boost inductors thereby reducing input current THD at the input of the three-phase boost converter.
Abstract:
For use with a three-phase split boost converter having a primary stage with a primary rectifier and first and second primary boost switches coupled between an input and first and second outputs of the three-phase split boost converter, an auxiliary stage, method of reducing input current total harmonic distortion (THD) at the input of the three-phase split boost converter, and a three-phase split boost converter employing the auxiliary stage and method. In one embodiment, the auxiliary stage includes first, second and third auxiliary boost inductors coupled to corresponding phases of the input. The auxiliary stage also includes an auxiliary boost switch, interposed between the first, second and third auxiliary boost inductors and the first and second outputs of the split boost, that conducts to induce corresponding phase currents through the first, second and third auxiliary boost inductors thereby reducing input current THD at the input of the three-phase split boost converter.
Abstract:
For use in a switch-mode power converter including parallel-coupled first and second switches, the first switch having a temperature-dependent resistance, a circuit for, and method of, distributing current between the first and second switches. In one embodiment, the circuit includes a device having a temperature-dependent characteristic, in thermal communication with the first switch and electrically coupled to a gate of the first switch, that senses a temperature of the first switch, modulates an amplitude of a drive waveform applied to the gate based on the temperature and thereby redistributes the current.
Abstract:
For use in a boost converter having first and second boost switches coupled in parallel, a snubber for, and method of, improving current sharing between the first and second boost switches. In one embodiment, the snubber includes: (1) first and second snubber inductors, series-coupled with the first and second boost switches, respectively, that limit a flow rate of the electrical current in the first and second switches, respectively, as a function of a rate of the flow and (2) a conductive path, including a first zener diode coupled to a first node between the first snubber inductor and the first boost switch and a second zener diode coupled to a second node between the second snubber inductor and the second boost switch, that conducts a turn-off energy of said first and second boost switches from the first and second nodes toward an output of the boost converter.