Abstract:
Motion blur rasterization may involve executing a first test for each plane of a tile frustum. The first test is a frustum plane versus moving bounding box overlap test where planes bounding a moving primitive are overlap tested against a screen tile frustum. According to a second test executed after the first test, for primitive edges against tile corners, the second test is a tile corner versus moving edge overlap test. The corners of the screen space tile are tested against a moving triangle edge in two-dimensional homogeneous space.
Abstract:
In accordance with some embodiments, the knowledge that a capped frame time is used can be exploited to reduce power consumption. Generally a capped frame time is a pre-allocated amount of time to apply power for rendering in graphics processing. Generally the frame time involves the application of power and some down time in which only idle power is applied pending the next frame time. By making better use of that down time, power consumption reductions can be achieved in some embodiments.
Abstract:
An apparatus and method are described for a non-uniform rasterizer. For example, one embodiment of an apparatus comprises: a graphics processor to process graphics data and render images using the graphics data; and a non-uniform rasterizer within the graphics processor to determine different resolutions to be used for different regions of an image, the non-uniform rasterizer to receive a plurality of polygons to be rasterized and to responsively rasterize the polygons in accordance with the different resolutions.
Abstract:
A method for improving performance of generation of digitally represented graphics. The method comprises: receiving a first representation of a base primitive; providing a set of instructions associated with vertex position determination; executing said retrieved set of instructions on said first representation of said base primitive using bounded arithmetic for providing a second representation of said base primitive, and subjecting said second representation of said base primitive to a culling process. A corresponding apparatus and computer program product are also presented.
Abstract:
An index is assigned to each entry in the set of possible coverage masks and two functions are generated. One function translates an index to a coverage mask. Also, a sparse function generates an index from a coverage mask. These functions may be realized in hardware and are used during decompression and compression, respectively.
Abstract:
In accordance with some embodiments, a zero coverage test may determine whether a primitive such as a triangle lies on lanes between rows or columns or lines of samples. If so, the primitive can be culled in a zero coverage culling test.
Abstract:
It is presented a method for improving performance of generation of digitally represented graphics. Said method comprises the steps of: selecting (440) a tile comprising fragments to process; executing (452) a culling program for the tile, the culling program being replaceable; and executing a set of instructions, selected from a plurality of sets of instructions based on an output value of the culling program, for each of a plurality of subsets of the fragments. A corresponding display adapter and computer program product are also presented.
Abstract:
Embodiments provide for a graphics processing apparatus comprising a graphics processing unit including bounding volume logic to encode a first bounding volume and a second bounding volume for a bounding volume hierarchy, wherein the first bounding volume is to be encoded at a higher numerical precision relative to the second bounding volume and the first bounding volume encloses the second bounding volume.
Abstract:
Real-time light field reconstruction for defocus blur may be used to handle the case of simultaneous defocus and motion blur. By carefully introducing a few approximations, a very efficient sheared reconstruction filter is derived, which produces high quality images even for a very low number of input samples in some embodiments. The algorithm may be temporally robust, and is about two orders of magnitude faster than previous work, making it suitable for both real-time rendering and as a post-processing pass for high quality rendering in some embodiments.
Abstract:
In accordance with some embodiments, a full per sample coverage mask may be used for a subset of the pixels in the tile, thereby enabling pixels that belong to multiple depth ranges to be handled. This makes the depth bounds a tighter fit for the true depth range of the tile and improves hierarchical depth culling efficiency when MSAA is used.