Abstract:
A surgical instrument is provided that includes an elongated shaft that includes a proximal end and a distal end; a cantilever beam is disposed at the distal end of the shaft; an optical fiber extends within a channel that extends within between proximal and distal portions of the cantilever beam; a first fiber Bragg grating (FBG) is formed in a segment of the optical fiber within the proximal portion of the beam; a second FBG is formed in a segment of the optical fiber within the distal portion of the beam.
Abstract:
A system includes a medical instrument that includes a termination fixture, an actuated element, and drive members coupled to the actuated element and extending to the termination fixture. The termination fixture provides an interface that exposes portions of the drive member to direct movement by an external system that may include a manipulator and a sterile barrier.
Abstract:
A teleoperated manipulator system includes a manipulator assembly and a tool actuation assembly coupled to the manipulator assembly. The tool actuation assembly inserts a tool, such as a surgical instrument, along an insertion axis and also rotates the tool around the insertion axis. The manipulator assembly includes an arm that rotates with reference to amounting base to rotate the tool around a yaw axis that intersects the insertion axis. A distal portion of the arm defines an arcuate pitch arc, and a center of the pitch arc is coincident with the intersection of the insertion axis and the yaw axis. The tool actuation assembly is driven along the pitch arc to pitch the tool. The manipulator system is optionally a telesurgical system, and the tool is optionally a therapeutic, diagnostic, or imaging surgical instrument.
Abstract:
Systems and methods for minimally invasive computer-assisted telesurgery are described. A computer-assisted teleoperated surgery system includes a teleoperated instrument actuation pod. The surgical instrument actuation pod includes a plurality of linear actuators arranged around a surgical instrument. The linear actuators engage with actuator engagement members on the instrument and so drive movable parts on the instrument. The actuation pod is mounted on a teleoperated manipulator. Instrument pod mass is close to the teleoperated manipulator to minimize the pod's inertia, momentum, and gravity effects on the manipulator.
Abstract:
A surgical port feature may include a funnel portion, a tongue, a waist portion, and surgical instrument channels. The waist portion may be located between the funnel portion and the tongue. The surgical instrument channels may extend from the funnel portion through the waist portion. The surgical port feature may further include a second tongue, with the wait portion being located between the funnel portion, the tongue, and the second tongue.
Abstract:
A surgical instrument is provided that includes an elongated shaft; an end effector located at the distal end of the shaft includes first and second jaws having opposing working faces and a pivot axis; at least one of the first and second jaws is mounted to rotatably pivot about the pivot axis. A fluid filled sac includes a first bladder portion and a second bladder portion and a tube portion extending between the first and second bladder portions; the first bladder portion is located at a working face of the first jaw; a sensor is operatively coupled to the second bladder portion to produce a sensor signal indicative of fluid pressure within the fluid filled sac.
Abstract:
A surgical instrument includes a force sensor apparatus that is immune to noise from arcing cautery without relying on fiber optic strain gauges, and that is autoclabable. The surgical instrument includes a housing, a shaft, the force sensor apparatus, a joint, and an end component. The force sensor apparatus includes at least one strain gauge that is enclosed in a Faraday cage. The Faraday cage includes a sensor capsule that includes one or more strain gauges, a cable shield tube connected to the sensor capsule, and an electronics enclosure connected to the cable shield tube. The sensor capsule is positioned between the joint and the shaft. The cable shield tube extends through the shaft to the electronics enclosure that is within the housing.
Abstract:
A surgical apparatus includes a cannula and a surgical instrument. The cannula includes a curved longitudinal axis along at least a portion of its length. The surgical instrument includes an elongated shaft having a distal end and a proximal end, and an end effector coupled to the distal end of the elongated shaft. At least a portion of the end effector is configured to contact an inner surface of the cannula during insertion of the surgical instrument into the curved cannula. A threshold galling stress between the portion of the end effector and an inner surface of the curved cannula is at least 10,000 pounds per square inch.
Abstract:
A medical instrument includes a snake wrist structure further including: a first joint disk having a first rim having a first tooth slot and a first toothed gear with the first tooth slot opposite the first toothed gear along the first rim; and a first strut having a first slot bearing and a first hole bearing connected by a first connection strut with the first slot bearing in the first tooth slot.
Abstract:
A shape-sensing segment traverses through at least a portion of a kinematic chain of a tele-operated slave surgical instrument in a tele-operated minimally-invasive surgical system. The shape-sensing segment includes a pre-set perturbation. Shape information from the pre-set perturbation allows determination of relative partial-pose information for at least one link in the kinematic chain.