摘要:
An electrode system includes (1) an electrode array, made in a straight or curved shape, but made on a flexible carrier so that it can easily bend within a curved body cavity, such as the cochlea; and (2) a flexible positioner, typically molded in a curved shape from a silicone polymer so as to make it easy to slide into the body cavity. Some embodiments may further include an electrode guiding insert. Yet other embodiments include only a flexible positioner adapted to fill space within a human cochlea so as to force an electrode array against a modiolar wall of the cochlea. Insertion of the electrode array is performed using one of two methods. A first method involves first inserting the flexible positioner into the scala tympani (one of the channels of the cochlea) to a desired depth, which desired depth typically involves a rotation of about 360 degrees and causes the positioner to rest against the outer or lateral wall of the scala tympani, leaving an opening slightly larger than the cross-section of the electrode array adjacent the inner wall of the scala tympani, and then second inserting the electrode array into the opening defined by the positioner and inner wall. The guiding insert may be used, in some embodiments, to assist guiding the electrode array into this opening. A second method of insertion involves first inserting an electrode array into the scala tympani, and then second inserting the positioner into the scala tympani so as to lie between the electrode array and the outer wall of the scala tympani, thereby forcing the electrode array against the inner wall of the scala tympani. Insertion of the positioner into scala tympani after the electrode array has been at least partially inserted therein further carries the electrode array deeper into the scala tympani to a desired final position, and maintains it in that position.
摘要:
A lead assembly and a method of making a lead are provided. The method of making a multi-contact lead assembly comprises placing monofilament placed in the void spaces not occupied by the plurality of conductor wires and, in one embodiment, thermally fusing the monofilament to the like material spacer by applying heat just below the melting temperature of the monofilament and spacer material. Alternatively, the monofilament and spacer may be of different materials and heat is applied to cause at least one material to thermally reflow or melt. The conductive contacts may be located at either the distal end and/or proximal end of the lead. Oversized spacers may be used in order to provide extra material to fill voids during the thermal fusion/reflow process.
摘要:
An impact resistant implantable antenna coil assembly comprising a flat antenna coil having a plurality of laterally separated turns of wire encapsulated with a non-orthogonal force absorbing coil reinforcement in a flexible biocompatible polymer and axially anchored with the reinforcement to a feedthrough case. Thus configured, non-orthogonal impact forces applied to the antenna coil assembly are absorbed and lateral components thereof that would otherwise be reflected as tensile forces in the plane of the coil are prevented from forming or from fracturing wire within the antenna coil.
摘要:
A detachable handle includes a handle body that is substantially tubular and defines a hollow center region extending at least a portion of a longitudinal length of the handle body. The handle body is configured and arranged to receive a portion of a stylet handle within the hollow center region and removably attach to the stylet handle. The handle body includes an external gripping surface extending at least a portion of an exterior surface of the handle body.
摘要:
An implantable microstimulator can include a housing having a first end; an electronic subassembly disposed within the housing; a plurality of electrodes disposed on the housing and coupled to the electronic subassembly; and a dissecting tip disposed at the first end of the housing. Another implantable microstimulator includes a housing having a first end; an electronic subassembly disposed within the housing; a plurality of electrodes disposed on the housing and coupled to the electronic subassembly; and a extraction aid disposed at the first end of the housing and configured and arranged for attachment of an extraction line.
摘要:
The present disclosure relates to fixation methods and systems used to secure an implantable medical component in the preferred location of the skull or other bony area of the body. The disclosed fixation methods and systems may be used with a component of a cochlear implant system or other implantable devices, particularly if they are equipped with silicone flaps or flanges, or the like. A mesh reinforcing material overlaps or intertwines into areas of the silicone flanges, which allows for a better distribution of the stress that may occur during the fastening process. Self-tapping screws are used to fasten the implantable component to the skull. The screws are placed in the silicone flanges where the mesh reinforcing material has been embedded. Standard suture-wire may also be used to secure the implantable component to the skull, the implantable component having mounting holes surrounded by the mesh reinforcing material.
摘要:
An implantable electrode system, adapted for insertion into a cochlea, includes an elongate electrode array stored within a sheath. The electrode array has a multiplicity of electrode contacts carried on a flexible elongate carrier, which carrier is adapted for insertion into one of the spiraling ducts, e.g., the scala tympani, of the cochlea, and further has longitudinal channel or lumen that passes therethrough. 3-6 mm from the distal end of the electrode array. To insert the electrode system into the cochlea, a stylet wire is inserted into the channel or lumen of the electrode array while the electrode array is held within the sheath. The sheath is then removed, and the electrode array is then gently guided and pushed through a cochleostomy into the cochlea by extending the stylet wire to a desired depth. As the electrode array is thus inserted into the cochlea, the stylet wire is retracted and the electrode array remains implanted within the cochlea.
摘要:
A multicontact electrode array suitable for implantation in living tissue includes a distal end having multiple spaced-apart ring contacts or a pattern of spaced-apart electrode contacts carried on a flexible carrier. Each electrode contact is resistance welded to a respective wire that is wound helically inside a silicon tube. The center of the helix defines a lumen wherein a positioning stylet, or other suitable positioning tool, may be removably inserted when the electrode array is implanted. The electrode array is made using a method that includes, as an initial step, winding lead wires around a suitable mandrel forming a helix configuration. Next, a non-conductive silicone tube jacket is placed around the wound wires, exposing the distal lead ends of the wires at a distal end of the tube. A welding process is then used to bond each wire tip to a corresponding metal electrode contact which has been preassembled by resistance welding to a metal foil structural carrier. The electrode array, including the metal foil structural carrier, is then formed into a tube by drawing it through a die. The excess foil material at the distal tip is then trimmed and a heat-shrink tube is placed around the assembled foil tube to prevent leakage of the polymer filler material through the joining longitudinal line of the carrier. Next, the foil tube is injected with a polymer filler material to void any gaps between the lead wires and contacts. To avoid filling the central lumen with the polymer filler material, a central core or stylet is temporarily placed inside the lumen. The heat-shrink tube is then mechanically removed. The fabrication method is finalized by inserting the preassembled electrode array into a hot acid mixture, which etches away the metal foil carrier, exposing the contacts at the surface of a distal end of the electrode array.
摘要:
A method of manufacturing an electrode array has an elongate flexible carrier that is much more flexible in a first direction than in a second direction orthogonal thereto. The elongate flexible carrier is formed with a bias force that causes the array to flex in the first direction so as to assume the general spiral or circular shape of the scala tympani duct within the cochlea. The less-flexible direction is the direction that makes it difficult for the array to twist as it is inserted within the scala tympani duct. The bias force is sufficiently strong to cause the array to assume its preformed spiral shape even after being straightened during initial insertion into the cochlea. Electrode contacts, embedded into the carrier so as to be exposed along an inner or concave surface of the spiral, thus wrap snugly around the modiolus, thereby positioning the electrode contacts against the modiolar wall in an optimum position for stimulation.
摘要:
A paddle-type electrode or electrode array is implantable like a percutaneously inserted lead, i.e., without requiring major surgery, and once implanted, expands to provide a platform for many electrode configurations. The electrode array is provided on a flexible, foldable, subcarrier or substrate. Such subcarrier or substrate folds or compresses during implantation, thereby facilitating its insertion using percutaneous implantation techniques and tools. Once implanted, such subcarrier or substrate expands, thereby placing the electrodes in a desired spaced-apart positional relationship, and thus achieving a desired electrode array configuration. A steering stylet may be accommodated in a lumen provided in the subcarrier or substrate. Insertion tools useful with such electrode arrays include a needle with an oblong cross-section, which accommodates the dimensions of the folded array, and also accommodates other electrode arrays that are not necessarily folded.